2

Drought Diagnosis: What the Medical Sciences Can Teach Us

Drought management is currently informed by a variety of approaches, mostly responding to drought crisis when it happens. Toward more effective and integrated drought management, we introduce a conceptual drought diagnosis framework inspired by …

SMAP-HydroBlocks, a 30-m satellite-based soil moisture dataset for the conterminous US

Drought monitoring and yield prediction often rely on coarse-scale hydroclimate data or (infrequent) vegetation indexes that do not always indicate the conditions farmers face in the field. Consequently, decision-making based on these indices can often be disconnected from the farmer reality. Our study focuses on smallholder farming systems in data-sparse developing countries, and it shows how field-scale soil moisture can leverage and improve crop yield prediction and drought impact assessment.

HydroBlocks v0.2: enabling a field-scale two-way coupling between the land surface and river networks in Earth system models

Although there have been significant advances in river routing and sub-grid heterogeneity (i.e., tiling) schemes in Earth system models over the past decades, there has yet to be a concerted effort to couple these two concepts. This paper aims to bridge this gap through the development of a two-way coupling between tiling schemes and river networks in the HydroBlocks land surface model. The scheme is implemented and tested over a 1 arc degree domain in Oklahoma, United States.

Field-scale soil moisture bridges the spatial-scale gap between drought monitoring and agricultural yields

Drought monitoring and yield prediction often rely on coarse-scale hydroclimate data or (infrequent) vegetation indexes that do not always indicate the conditions farmers face in the field. Consequently, decision-making based on these indices can often be disconnected from the farmer reality. Our study focuses on smallholder farming systems in data-sparse developing countries, and it shows how field-scale soil moisture can leverage and improve crop yield prediction and drought impact assessment.

Evaluation of 18 satellite- and model-based soil moisture products using in situ measurements from 826 sensors

Information about the spatiotemporal variability of soil moisture is critical for many purposes, including monitoring of hydrologic extremes, irrigation scheduling, and prediction of agricultural yields. We evaluated the temporal dynamics of 18 …

PPDIST, global 0.1° daily and 3-hourly precipitation probability distribution climatologies for 1979–2018

We introduce the Precipitation Probability DISTribution (PPDIST) dataset, a collection of global high-resolution (0.1°) observation-based climatologies (1979–2018) of the occurrence and peak intensity of precipitation (P) at daily and 3-hourly …

A global near-real-time soil moisture index monitor for food security using integrated SMOS and SMAP

Soil Moisture (SM) is a direct measure of agricultural drought. While there are several global SM indices, none of them directly use SM observations in a near-real-time capacity and as an operational tool. This paper presents a near-real-time global …

Combining hyper-resolution land surface modeling with SMAP brightness temperatures to obtain 30-m soil moisture estimates

Accurate and detailed soil moisture information is essential for, among other things, irrigation, drought and flood prediction, water resources management, and field-scale (i.e., tens of m) decision making. Recent satellite missions measuring soil …

HPC simulations of brownout: A noninteracting particles dynamic model

Helicopters can experience brownout when flying close to a dusty surface. The uplifting of dust in the air can remarkably restrict the pilot’s visibility area. Consequently, a brownout can disorient the pilot and lead to the helicopter collision …

Cognitive Biases about Climate Variability in Smallholder Farming Systems in Zambia

Given the varying manifestations of climate change over time and the influence of climate perceptions on adaptation, it is important to understand whether farmer perceptions match patterns of environmental change from observational data. We use a …