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A B S T R A C T

Accurate and detailed soil moisture information is essential for, among other things, irrigation, drought and
flood prediction, water resources management, and field-scale (i.e., tens of m) decision making. Recent satellite
missions measuring soil moisture from space continue to improve the availability of soil moisture information.
However, the utility of these satellite products is limited by the large footprint of the microwave sensors. This
study presents a merging framework that combines a hyper-resolution land surface model (LSM), a radiative
transfer model (RTM), and a Bayesian scheme to merge and downscale coarse resolution remotely sensed hy-
drological variables to a 30-m spatial resolution. The framework is based on HydroBlocks, an LSM that solves the
field-scale spatial heterogeneity of land surface processes through interacting hydrologic response units (HRUs).
The framework was demonstrated for soil moisture by coupling HydroBlocks with the Tau-Omega RTM used in
the Soil Moisture Active Passive (SMAP) mission. The brightness temperature from the HydroBlocks-RTM and
SMAP L3 were merged to obtain updated 30-m soil moisture. We validated the downscaled soil moisture esti-
mates at four experimental watersheds with dense in-situ soil moisture networks in the United States and ob-
tained overall high correlations (> 0.81) and good mean KGE score (0.56). The downscaled product captures the
spatial and temporal soil moisture dynamics better than SMAP L3 and L4 product alone at both field and wa-
tershed scales. Our results highlight the value of hyper-resolution modeling to bridge the gap between coarse-
scale satellite retrievals and field-scale hydrological applications.

1. Introduction

Monitoring and forecasting of hydrological, biophysical, and eco-
logical processes at scales that are relevant for decision making is cri-
tical for water management. For instance, soil moisture, surface tem-
perature, evapotranspiration, snow water equivalent, irrigation water
demands, crop yields, droughts, floods, erosion risk, epidemic disease
outbreaks, and ecosystem services are states and processes highly
linked to the fine-scale interactions between water, energy, and carbon
fluxes at the land surface (Koster and Suarez, 1992; Wood et al., 2011;
Crow et al., 2012). While in-situ measurements are often sparse and
expensive, visible-infrared and microwave-based satellite retrievals
offer a unique opportunity for global and continental monitoring of soil
moisture, surface temperature, and evapotranspiration (Pan and Wood,
2010). There is, however, a critical gap between the coarse spatial scale

of space-born remotely sensed retrievals and field-scale applications.
This scale gap is an issue as fine-scale hydrological interactions play a
key role in the spatial-temporal dynamics of hydrological and biophy-
sical processes. Consequently, the failure to represent landscape het-
erogeneity in hydrological estimates leads to deficiencies in re-
presenting the fluxes and feedbacks of the water, energy, and carbon
cycles (Pachepsky et al., 2003; Falloon et al., 2011; Piles et al., 2011;
Chaney et al., 2018).

To overcome the spatial scale gap between satellite retrievals and
water management applications, spatial downscaling techniques have
been developed that use geostatistics, machine learning, land surface
models (LSMs), and data assimilation (for reviews, see Reichle, 2008;
Srivastava et al., 2013; Atkinson, 2013; Peng et al., 2017). Statistical
and machine learning methods have been applied to downscale coarse-
scale satellite retrievals based on high-resolution remotely sensed
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proxies. For instance, DisALEXI disaggregates GOES 5-km surface flux
estimates to 10–100 m by using high spatial resolution radiative and
optical remotely sensed proxies, such as a vegetation index and surface
temperature from ASTER, Landsat, and MODIS (Norman et al., 2003).
More recently, for soil moisture, Sadeghi et al. (2017) proposed an
optical trapezoid model based on the distribution of land surface tem-
perature and vegetation in Sentinel-2 and Landsat-8 to derive the
physical relation between soil moisture and shortwave infrared re-
flectance. Fang et al. (2019) proposed a more data-intensive approach
that uses a change detection disaggregation algorithm to combine PALS
observations (Passive and Active L-band system) at 1600-m with radar
backscatter from an Unmanned Air Vehicle Synthetic Aperture Radar
(UAVSAR) to estimate soil moisture at 5–800 m. Ojha et al. (2019)
proposed a stepwise disaggregation of SMAP to 100-m resolution using
1-km MODIS land surface temperature and NDVI and Landsat-7/8 land
surface temperature. Although downscaling using statistical and ma-
chine learning approaches are trained on high-resolution remotely
sensed data proxies, they often do not consider the interactions of the
landscape with current meteorological conditions and thus do not re-
solve the physical processes (Peng et al., 2017). This leads to statistical
relationships that can be satisfied locally but potentially not regionally,
resulting in models that are prone to overfitting and are often do not
generalize well (Liu et al., 2017). In addition, inference from high-re-
solution optical sensors (visible and near-infrared thermal) is affected
by atmospheric attenuation and dense vegetation (Bindlish et al., 2003;
de Jeu et al., 2008; Jones et al., 2011), and it is subject to the coarse
temporal resolution of their retrieved products.

A well-established methodology to address the lack of physical
process interpretability and model transferability is to combine radia-
tive transfer models (RTMs) and land surface models (LSMs). RTMs use
satellite-based radiative temperature observations and ancillary in-
formation on soil properties, vegetation, and meteorological conditions
to model hydrological processes (Jackson, 1993; Njoku and Li, 1999;
Drusch et al., 2005). LSMs are physically-based models that simulate
hydrological processes, dynamically accounting for the water and en-
ergy balances, and sometimes also accounting for the carbon cycle,
vegetation dynamics, and groundwater flows. More recently, LSMs have
also accounted for human activities such as irrigation, groundwater,
and surface water abstractions, and reservoir operations (Bierkens
et al., 2015). The main advantage of combining LSMs and RTMs is the
ability to estimate radiative variables and merge them with the satellite
observations. This strategy has been widely used to assimilate land
surface variables such as SMAP and SMOS soil moisture (Crow and Van
Loon, 2006; Pan et al., 2014; De Lannoy and Reichle, 2016a; Lievens
et al., 2016), with more recently the SMAP-L4 using dynamic data as-
similation to lead this effort (Reichle et al., 2017; Reichle et al., 2018a).
Land surface models have also been used to directly assimilate surface
temperature (Reichle et al., 2010; Ghent et al., 2010) and snow water
equivalent (Andreadis and Lettenmaier, 2006; Clark et al., 2006; Huang
et al., 2008; De Lannoy et al., 2012; Durand and Margulis, 2006; Painter
et al., 2016).

Although RTMs offer unique opportunities, their accuracy is limited
by the significant uncertainties in the radiative observations them-
selves, in the coarse-scale ancillary data, and in the spatial scale mis-
match during the calibration process (between the coarse-scale grid of
the sensor and the point-scale in-situ observations). In addition, most
LSMs a) still operate at relatively coarse spatial scales (> 5 km); b) do
not account for the sub-grid spatial heterogeneity in soil parameters,
vegetation, and topography; or c) neglect fine-scale water, energy, and
carbon interactions. Remotely sensed variables, such as brightness
temperature, surface emissivity, and vegetation indexes are highly
sensitive to the landscape heterogeneity in terms of surface tempera-
ture, vegetation, soil moisture, and soil properties (Bindlish et al., 2003;
de Jeu et al., 2008; Mironov et al., 2009). Consequently, the homo-
geneous and coarse-scale representation of hydrological parameters and
land surface processes limits the value of traditional coarse-scale LSMs

to merge and downscale satellite observations to field scales.
For satellite observations and models to be truly useful for water

management applications, there is a critical need to combine the
emerging capability of high-resolution modeling with available fine-
scale physiographic data and remote sensing retrievals (Wood et al.,
2011). The land surface modeling community is already taking ad-
vantage of big data analytics, high-performance computing, and hyper-
resolution modeling to revolutionize hydrological simulations (Wood
et al., 2011; Bierkens et al., 2015). HydroBlocks, for example, is a state-
of-the-art physically-based hyper-resolution LSM that considers high-
resolution ancillary datasets (30–100 m resolution) as drivers of land-
scape spatial heterogeneity (Chaney et al., 2016). To this end, Hydro-
Blocks clusters areas of similar hydrological behavior into hydrologic
response units (HRUs), allowing the model to efficiently simulate hy-
drological, geophysical, and biophysical processes at an effective 30-m
resolution for continental domains.

In this study, we introduce a framework that uses hyper-resolution
LSM and RTM to downscale remotely sensed hydrological and biogeo-
physical variables to an unprecedented 30-m spatial resolution. We
demonstrate this framework by merging model and remotely sensed
brightness temperature observations for fine-scale soil moisture re-
trieval. More specifically, the proposed framework couples the
HydroBlocks LSM to a Tau-Omega brightness temperature RTM to es-
timate brightness temperature at fine scales; it uses Bayesian merging to
combine these fine-scale estimates with the 36-km Soil Moisture Active
Passive (SMAP) brightness temperatures observations. We sub-
sequentially retrieve 30-m SMAP-based soil moisture from the merged
brightness temperature via the inverse RTM. Although implemented for
soil moisture, this physically-based framework also allows for the
downscaling of surface temperature as well as snow water equivalent to
30-m spatial resolution, and it can also be adapted for evapo-
transpiration and crop water requirements estimates. The proposed
merging and downscaling framework is described in Section 2.3. The
results are evaluated at four densely monitored experimental water-
sheds in the United States: Little River (GA), Little Washita (OK),
Reynolds Creek (ID), and Walnut Gulch (AZ). The performance of the
downscaled soil moisture (as well as the SMAP L3 and the SMAP L4
products) is assessed using in-situ observations. In addition, we perform
an uncertainty analysis of the Bayesian merging scheme. This work
aims to inform the scientific community on (i) how hyper-resolution
land surface modeling can aid the assimilation of remotely sensed ob-
servations and improve the representation of landscape heterogeneity;
and (ii) the reliability of the merged brightness temperature in pro-
viding relevant soil moisture information for scientific and water
management applications.

2. Data and methods

Despite the significant implications for soil moisture data for hy-
drological studies and water management, in-situ observations are
costly and sparse. Microwave-based satellite remote sensing offers un-
ique opportunities for large-scale monitoring, but with the limitation of
the coarse spatial resolution. Given these challenges, we demonstrated
the potential for using hyper-resolution land surface modeling to merge
and downscale remotely sensed observations. In the next sections, we
present details in the implementation of the HydroBlocks LSM, the Tau-
Omega RTM, the Bayesian merging, and the SMAP-based 30-m soil
moisture retrieval.

2.1. Hydrological modeling

2.1.1. HydroBlocks land surface model
HydroBlocks is a field-scale resolving land surface model (Chaney

et al., 2016) that accounts for the water, energy, and carbon balance to
solve land surface processes at an effective hourly, 30-m resolution.
HydroBlocks leverages the repeating patterns that exist over the
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landscape (i.e., the spatial organization) by clustering areas of assumed
similar hydrologic behavior into HRUs. The simulation of these HRUs
and their spatial interactions allows the modeling of hydrological,
geophysical, and biophysical processes at the field-scale (30 m) over
regional to continental extents (Chaney et al., 2016). The core of Hy-
droBlocks is the Noah-MP (Niu et al., 2011) vertical land surface
scheme. HydroBlocks applies Noah-MP in an HRU framework to ex-
plicitly represent the spatial heterogeneity of surface processes down to
field scale. At each time step, the land surface scheme updates the
hydrological states at each HRU; and the HRUs dynamically interact
laterally via subsurface flow.

To enable a realistic representation of horizontal exchanges while
preserving the high computational efficiency of HRUs, HydroBlocks
implements a multi-scale hierarchical clustering (HRU generation)
scheme that operates at several critical spatial scales identified for the
underlying hydrological, geophysical and biophysical processes
(Chaney et al., 2018):

(a) Catchments: defined by topography and serve as the boundary for
surface flows;

(b) Characteristics hillslopes: defined by topography and environmental
similarity;

(c) Height bands: defined by the height above nearest drainage (HAND)
and define the primary flow directions and temperature gradient;

(d) Tiles (HRUs): defined by multiple soil/vegetation/land cover char-
acteristics and serve as the smallest modeling units.

With this hierarchical setup, HydroBlocks handles mass/energy
exchanges within a modeling unit (at a certain scale) separately from
the exchanges across the units at that scale. This enables full and rea-
listic horizontal coupling while ensuring computational efficiency.

2.1.2. Hydrological modeling experiment
In this study, the HydroBlocks LSM was used to simulate the land

surface processes at 30-m, 1-h resolution from 2010 to 2017 using 500
HRUs per watershed. The meteorological inputs to the model consist of
3-km (1/32°), 1-h meteorological forcing from the Princeton CONUS
Forcing (PCF) dataset (Pan et al., 2016) which was developed by
downscaling North American Land Data Assimilation System 2 (NLDAS-
2) data in combination with several higher resolution products. The
precipitation combines the Stage IV and Stage II radar/gauge products
with NLDAS-2, the shortwave radiation combines GOES Surface and
Insolation Product (GSIP) with NLDAS-2, while the other field variables
are downscaled from NLDAS-2. An elevation-based downscaling/fusion
procedure is used to ensure physical consistency and mass/energy
balance. We used the 30-m DEM from the Shuttle Radar Topography
Mission (STRM; Farr et al., 2007) and post-processed it to remove pits
and derived slope, aspect, topographic index, flow direction, and flow
accumulation values. We used the 2016 30-m land cover type from the
National Land Cover Database (NLCD; Homer et al., 2015). The soil-
water hydraulic parameters used in NOAH-MP were from the 30-m
Probabilistic Remapping of SSURGO (POLARIS) dataset (Chaney et al.,
2019). We also include 30-m Landsat-derived NDVI for 2010 (USGS;
Roy et al., 2010); 30-m Landsat-derived fractions of bare soil and tree
cover (USGS; Hansen et al., 2013); and a 500-m MODIS-derived irri-
gated-land map (Global Rainfed, Irrigated and Paddy Croplands -
GRIPC; Salmon et al., 2015) as additional high-resolution drivers of
landscape heterogeneity for the HRU clustering.

No model calibration was performed in this study to ensure that the
validation of the soil moisture products is independent of any direct
observation. For the RTM, we used the top 5-cm soil moisture and soil
temperature estimates from HydroBlocks for the period between 2015
and 2017, with 2010–2014 used for model spin-up. The clay content
from POLARIS, as a by-product of the HRU clustering, was also used as
fine-scale input to the emissivity module in the RTM.

2.2. Brightness temperature observations and radiative transfer modeling

2.2.1. Remote sensing observations and retrievals: soil moisture active-
passive mission

We used version 5 of the SMAP L3 Radiometer Global Daily 36-km
EASE-Grid Soil Moisture product (O'Neill et al., 2018). This product
provides L-band brightness temperature observations, the associated
soil moisture retrievals, and the RTM ancillary data on a global, cy-
lindrical 36-km Equal-Area Scalable Earth (EASE) grid. The SMAP
brightness temperature observations we used in the merging, the soil
moisture retrievals were used in the evaluation of the results, and the
ancillary data was used to support the RTM modeling. We use the
vertical polarization of the SMAP L-band brightness temperature ob-
servations for the merging because it tends to offer the best sensitivity
to soil moisture retrieval at the top 5 cm of the soil (e.g., Jackson, 1993;
Njoku and Li, 1999; O'Neill et al., 2018). In this study, we use only the
vertically polarized brightness temperature already corrected and
flagged for the quality of the retrievals, i.e. for presence of transient
water, frozen ground, snow coverage, and flooding, and as well as
steeply sloped topography, or for urban, heavily forested, or permanent
snow/ice areas are in effect (O'Neill et al., 2018). The ancillary data of
SMAP-L3, that is used in the Tau-Omega RTM in this study, comes
primarily from the NASA Goddard Space Flight Center - Global Mod-
eling and Assimilation Office (GMAO) GEOS-5 model (surface tem-
peratures) and other satellite sensors such as MODIS (NDVI, land cover
classes, open water fraction, permanent snow/ice, etc.). This data
product spans from 31 March 2015 to near present, with measurements
at 6:00 am and 6:00 pm passing time and 3–5 days between overpasses.

2.2.2. Radiative transfer model: SMAP tau-omega RTM for brightness
temperature

Satellite data products use RTMs and ancillary data to relate the
sensor's radiative measurements to physical variables, such as land
surface temperature, soil moisture, and evapotranspiration
(Karthikeyan et al., 2017). In this work, we refer to a “forward” RTM, or
simply RTM, when the radiative temperature measured in space is es-
timated from the land surface condition and ancillary data. Conversely,
we refer to the associated “inverse” RTM when land surface conditions
are estimated from observed radiative variables and ancillary data. In
general, each satellite may use a different RTM that was designed and
calibrated to estimate a given land surface variable.

The SMAP mission uses a Tau-Omega RTM to retrieve soil moisture
from surface brightness temperature (TB, K) observations. SMAP re-
trievals can capture the soil moisture dynamics because its L-band
sensor is able to measure the surface emissivity due to the contrast in
dielectric properties between wet and dry soils (Entekhabi et al., 2014;
Chan et al., 2016). In the Tau-Omega RTM, the brightness temperature
is calculated as the sum of the canopy attenuated soil emission, the
direct vegetation emission, and the vegetation emission reflected by the
soil and attenuated by the canopy:

= +

+

T T e T e

T e e
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B soil soil

cos
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/ /
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where εsoil is the soil emissivity, ω is the single-scattering albedo within
the canopy, τ is the optical depth of the canopy, α is the look angle from
nadir, Tsoil is the soil temperature, and Tveg is the vegetation tempera-
ture. In this Tau-Omega RTM, the soil emissivity is estimated based on
the soil moisture and clay content using the Mironov soil dielectric
model (Mironov et al., 2009). Here, for simplicity, a single surface
temperature was used to represent the average of the vegetation and
surface temperatures. The technical details on the SMAP algorithm and
the ancillary data processing can be found in the SMAP Handbook
(Entekhabi et al., 2014) and product Algorithm Theoretical Basis
Documents (O’Neill et al., 2014, 2018).
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2.3. Bayesian merging and downscaling framework

The merging and downscaling scheme proposed in this work relies
on a three-step process. First, we coupled HydroBlocks and the Tau-
Omega RTM to predict brightness temperature at the same fine-scale of
HydroBlocks. Then we use Bayes' Theory to merge these fine-scale
brightness temperature estimates with the coarse-scale SMAP bright-
ness temperature observations. In the end, once the brightness tem-
perature observations are merged, the inverse RTM is used to retrieve
the downscaled soil moisture. Fig. 1 summarizes the workflow for the

brightness temperature merging and the retrieval of the downscaled soil
moisture.

Specifically, HydroBlocks LSM was used to estimate hourly top 5-cm
soil moisture and soil temperature, as well as clay content from
POLARIS — averaged at the HRU— as a by-product of the HydroBlocks
clustering analysis. We used the SMAP L3 surface temperature to bias
correct HydroBlocks surface temperature prior to the brightness tem-
perature estimation at fine-scale (not included in Fig. 1). This was an
optional step that was adopted to reduce the systematic difference be-
tween SMAP observed and HydroBlocks-RTM estimated brightness
temperatures. And although bias correcting the surface temperature a
priori neglects the connectivity between HydroBlocks soil moisture and
the new surface temperature, the merging is only performed con-
sidering the brightness temperature. Also, the performance of the
downscaled soil moisture was found to be superior with this surface
temperature bias correction.

As a first step, we estimated the brightness temperature using the
HydroBlocks-RTM framework. For input data to the RTM, we used the
top 5-cm soil moisture and clay content from HydroBlocks; the 30-m
bias-corrected surface temperature; and the 36-km vegetation optical
depth, roughness length, and albedo from SMAP-L3 ancillary data. For
simplification, we assumed that the above-mentioned 36-km SMAP
ancillary data is homogeneously distributed within the SMAP 36-km
grid cell. By ensuring consistency with SMAP L3 ancillary data, we
leave the differences in the model and the observed brightness tem-
peratures to differences in mostly soil moisture. This helps to isolate the
soil moisture signal from the ancillary data. In the second step, we
merge the 30-m HydroBlocks-RTM brightness temperature with the 36-
km coarse-scale SMAP brightness temperature observations using
Bayesian merging (details in the sequence). Once merging was com-
pleted, the last step relied on applying the 30-m merged brightness
temperature, along with the above-mentioned ancillary data, as inputs
into the inverse Tau-Omega RTM to retrieve the final downscaled soil
moisture.

The primary motivation for this three-step scheme (RTM, Bayesian
merging, and inverse RTM) was to isolate the non-linear relationship
between soil moisture and brightness temperature from the merging
process. This three-step approach was particularly helpful as (i)
Gaussian-based merging and assimilation techniques, such as Bayesian
merging, require linearity between the assimilated variables for op-
timality, and (ii) it allowed us to merge the observed SMAP brightness
temperature directly, instead of solely merging the SMAP soil moisture
retrieval product on HydroBlocks soil moisture estimates.

2.4. Bayesian merging of brightness temperature

Bayes' Theory was used to merge the HydroBlocks-RTM and SMAP
brightness temperatures given its ability to obtain more reliable esti-
mates from noisy observations or estimates. Similar to proposed by
Zhan et al. (2006), our merging approach follows a Kalman filter-based
scheme but with the merging performed entirely in the HydroBlocks'
HRU-space (instead of regular grids) and with each time being merged
independently. Fig. 2 illustrates the merging workflow. In this context,
the optimal brightness temperature +xt for all the HRUs in the domain at
time t can be derived from the fine-scale HydroBlocks-RTM brightness
temperature forecast xt (model forecast), updated according to the
state update equation:

= ++x x K y Hx[ – ]t t t t (2)

In this system, +xt and xt have dimensions nhru × 1, where nhru is
the total number of HRUs in the domain. yt is the vector containing the
36-km SMAP brightness temperature observations at time t. yt has di-
mensions ns × 1, where ns is the total number of SMAP grids in the
domain. H is the observation operator that maps HydroBlocks-RTM
brightness temperatures (xt ) from the HRUs scale to the SMAP grid

Fig. 1. Flow diagram illustrating the HydroBlocks-RTM merging framework.
This framework is applied to merge the 36-km SMAP L3 observed brightness
temperature and subsequently retrieve the downscaled soil moisture. It uses the
HydroBlocks land surface model, the Tau-Omega radiative transfer model, and
Bayesian merging in the HRU-space to obtain 30-m soil moisture estimates.
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scale. H has dimensions ns × nhru, and it uses a Gaussian-shaped
weighted area to account for the relative contribution of each HRU to
each SMAP grid. Since the merging is performed using model and ob-
served brightness temperatures, H is in practice a linear Gaussian
scaler. Thus, +Hxt is the estimate of HydroBlocks-RTM brightness tem-
perature at the observation scale and it has dimensions ns × 1. The
difference in brightness temperature between the SMAP observation
and HydroBlocks-RTM forecast in the observation space (yt – +Hxt ) is
herein called the innovation term. K is the gain, and it is calculated
based on the relative magnitude between the model and the observa-
tion uncertainties:

=
+

K PH
HPH R

T

T (3)

In this merging framework, K operates in the HRU-space and it has
dimensions nhru × ns. In Eq. (3), R is the observation error covariance
matrix and P is the forecast error covariance matrix. The observation
error covariance matrix has its diagonal elements set to the SMAP
radiometer uncertainty of 1.3 K (Piepmeier et al., 2017), with the off-
diagonal set to zero assuming the SMAP observation errors were un-
correlated with each other. The R matrix has dimensions ns × ns. To
estimate the errors in the brightness temperature forecast, we consider
the model uncertainty and the brightness temperature sensitivity. Hy-
droBlocks has a soil moisture RMSE of approximately 0.05 m3/m3, and
based on the brightness temperature sensitivity of 1 K per 0.01 volu-
metric soil moisture for X band (SMAP handbook; Entekhabi et al.,
2014), we estimate the error in the brightness temperature forecast to
be around 52 K2. The P forecast error covariance matrix has dimensions
nhru × nhru. We assume that HRUs belonging to the same SMAP grid
have correlated errors. Conversely, if an HRU pair belongs to different
SMAP grids, the errors are assumed to be uncorrelated. Thus, in the P
matrix the entries of correlated HRU pairs were set to 52 K2, and the
entries of uncorrelated HRU pairs were set to zero.

When Eq. (2) is applied to dynamic systems, with both system states
and error covariances are updated sequentially, the approach is called
the Kalman filter. However, in our study, the merging is performed at
each time step independently, and the system states and error covar-
iances are not updated sequentially. In this case, as highlighted by Zhan
et al. (2006), Eq. (2) is an implementation of Bayes' Theory.

In our results, we often observed a systematic bias between
HydroBlocks and SMAP soil moisture, as well as a bias between
HydroBlocks-RTM and SMAP brightness temperatures. This bias be-
tween forecast and observed brightness temperature is called the fore-
cast bias hereafter. Gaussian-based merging approaches are only op-
timal when there is no forecast bias between the variables and when
both variables have Gaussian-distributed errors that are independent
and uncorrelated (Anderson and Moore, 2005). And, consequently, this

forecast bias leads to non-optimal estimates. A common procedure is to
remove the forecast bias before the merging, as it showed to improve
the optimality of radiative variables assimilation (Reichle et al., 2004;
De Lannoy et al., 2007; Kumar et al., 2012; De Lannoy and Reichle,
2016b). We calculated the forecast bias seasonally, using a 3 hourly 4-
month window moving average. The 4-month window was identified
by testing windows of sizes from 1 to 12 months, and the 4-month
window showed the best performance. Once estimated the forecast bias,
the merging is performed as follows:

= ++x x K y Hx bias[( – ) ]t t t t forecast (4)

Similar data merging approaches have been applied previously at
spatial resolutions up to 1-km using land surface models and dynamic
assimilation for SMAP, SMOS, and AMSR-E (Zhan et al., 2006; Durand
and Margulis, 2006; Sahoo et al., 2013; Pan et al., 2014; De Lannoy and
Reichle, 2016a, 2016b; Lievens et al., 2016; Lievens et al., 2017). This
study builds on these previous efforts to enable hydrological estimates
at 30-m spatial resolution. Here, the HRU concept used in HydroBlocks
is leveraged to perform both the land surface modeling and the data
merging in the HRU space. This implies considering the irregular spatial
distribution and contribution of each of the HRU and its surroundings
when merging the brightness temperatures. While more complex,
working in the HRU space reduces the dimensionality of the system. For
instance, one SMAP grid of 36-km by 36-km contains ~1.44 million 30-
m grid cells. By implementing the HRU-based merging, we reduce the
dimension of the system by at least two orders of magnitude, with a
resulting ~1500–2000 HRUs per SMAP grid. In this way, HRUs allow
for highly efficient distributed computing, and it lowers the computa-
tional and data storage requirements in comparison to fully distributed
setups.

2.5. Evaluation and sensitivity analysis

2.5.1. Framework evaluation
To assess the process representativeness and consistency of the hyper-

resolution-derived soil moisture estimates, we evaluated the soil moisture
products against in-situ soil moisture observations. The four sites eval-
uated in this study were Little River (GA), Little Washita (OK), Reynolds
Creek (ID), and Walnut Gulch (AZ) experimental watersheds (Fig. 3).
These sites were chosen because of their dense in-situ soil moisture
networks and their diversity in terms of climate, topography, and vege-
tation. We used a total of 60 probes from the SMAPVEX15 (https://smap.
jpl.nasa.gov/science/validation/fieldcampaigns/SMAPVEX15/) and
SMAPVEX16 (Colliander et al., 2017, 2019) campaigns.

Fig. 2. The proposed approach uses Bayesian merging to combine the
HydroBlocks-RTM fine-scale brightness temperature estimates (xt ) with the 36-
km SMAP observed brightness temperature (yt) to obtain the optimal brightness
temperature estimate ( +xt ). In this work, the merging is performed in the HRU-
space, instead of regular grids.

Fig. 3. The four experimental watersheds in which we evaluate the downscaled
soil moisture estimates. The black points represent in-situ soil moisture probes.
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In addition, we compared the performance of our results with the
state-of-the-art SMAP L4 Global 3-hourly 9 km EASE-Grid Surface Soil
Moisture Analysis Update product (Reichle et al., 2018a). The SMAP-L4
product is computed by using a dynamic assimilating the SMAP

brightness temperatures into the NASA Catchment land surface model
(Koster et al., 2000) using a customized version of the Goddard Earth
Observing System (GEOS) land data assimilation system (Reichle et al.,
2014; Reichle et al., 2018b).

Fig. 4. Time series of daily soil moisture averaged at the in-situ observational network and compared with the basin averaged collocated grid cells. The black line
shows the soil moisture as observed by the in-situ probes; the red line shows the HydroBlocks LSM top 5-cm soil moisture; the orange line shows the SMAP L4 soil
moisture; the blue line shows the SMAP-L3 soil moisture and the green line the downscaled soil moisture as a result of merging HydroBlocks and SMAP L3 brightness
temperatures. The right panel shows the respective scatter plots, which summarize the distribution of all records of each product in comparison to the observations
for each evaluation site.
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We compared the in-situ observations with the collocated grid cell
of the 36-km SMAP L3 soil moisture, 9-km SMAP L4 soil moisture, 30-m
HydroBlocks soil moisture, and 30-m downscaled soil moisture, at the
point and watershed-average scales. We evaluated the soil moisture
estimates in terms of the root mean squared error (RMSE); unbiased
root means squared error (ubRMSE); and Kling-Gupta efficiency (KGE;
Kling et al., 2012). The KGE score combines the linear Pearson corre-
lation (⍴), the bias component (β) defined by the ratio of estimated and
observed means, and the variability component (γ) as the ratio of the
estimated and observed coefficients of variation:

= + +KGE 1 ( 1) ( 1) ( 1)2 2 2 (5)

= =µ µ and µ µ/ ( / )/( / )model observation model model observation observation (6)

where μ and σ are the distribution mean and standard deviation. To
remove the impact of frozen soils in the evaluation, we masked the soil
moisture estimates when the LSM soil temperature was below 0 °C.

In addition, to quantify the skill of the soil moisture products in
representing the spatial variability of the observations, we calculated
the spatial standard deviation for each watershed. The spatial standard
deviation was calculated at each time step only when at least 10 in-situ
observations and all the soil moisture products were available si-
multaneously. The entry data for each soil moisture product was
identified based on the collocated grid cell of each in-situ observation.

2.5.2. Sensitivity analysis
As mentioned previously, the forecast bias between the satellite ob-

served and modeled brightness temperature may lead to sub-optimal
merging and therefore it should be removed a priori. We observed that,
for different watersheds, the merged soil moisture estimates showed
different performance with or without the long-term brightness tem-
perature forecast bias removal. For instance, at some watersheds the

merging performed well without the forecast bias term, while for other
watersheds, the merging performed very poorly without the forecast bias
term. To investigate this disparity, we quantified the sensitivity of the
downscaled soil moisture to the correction of the brightness temperature
forecast bias by expanding Eq. (4) to include weights w1 and w2:

= ++x K y Hx w bias wx [( – ) ( ) ]t t t t forecast1 2 (7)

In specific, by varying the w1 and w2 weights, we quantified the
sensitivity of the merged brightness temperature ( +xt ) with respect to
the instantaneous contributions (via innovation term, yt – Hxt−) and the
long-term contributions via the forecast bias. In this way, the higher the
w1 weight, more weight is given to the instantaneous contributions of
SMAP L3 brightness temperature. On the other hand, the higher the w2

weight, more weight is given to the long-term contributions of the
forecast bias (of HydroBlocks with respect to SMAP L3). This allows us
to essentially investigate which temporal scale information that is
contained in the observations we are allowing to influence the data
merging. For this analysis we used the KGE, as well as the temporal soil
moisture bias, variability, and correlation components to quantify the
uncertainty in the retrieved downscaled soil moisture for each of the
four watersheds. This analysis allows quantifying the errors associated
with merging uncertain and biased model estimates and observations
by accounting for the different contributions of the instantaneous and
long-term temporal differences. Based on the outcomes of this sensi-
tivity analysis, the results in this paper were carried out using a 0.5
weight for w1 and w2.

Fig. 5. Mean annual soil moisture of the SMAP L3 product (first column); the SMAP L4 product (second column); the HydroBlocks LSM (third column); the
downscaled product via the Bayesian merging (fourth column); and the in-situ observations network (overlaid points) at each of the four evaluation sites (lines).
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3. Results

3.1. Merging and downscaling performance

Fig. 4 shows the time series of HydroBlocks LSM, SMAP L3, SMAP
L4, and the downscaled soil moisture products averaged at the in-situ
observation network locations and the respective collocated grid-cell
for each watershed during 2016. HydroBlocks represented well the
timing of the soil moisture peaks and the overall seasonal wet and dry
dynamics with performance comparable or better to SMAP L3 and
SMAP L4. However, SMAP L4, HydroBlocks, and the downscaled pro-
duct generally overestimated soil moisture at dry sites, such as Walnut
Gulch. SMAP L3 represented well the soil moisture dry downs in Little
Washita and Walnut Gulch. SMAP L3 shows very high and low biases
for the Little River and Reynolds Creek basins, respectively. Overall, in
terms of temporal dynamics, the downscaled product offered a good
compromise between HydroBlocks and SMAP L3 and L4 soil moisture
products.

Fig. 5 shows the spatial distribution of soil moisture in terms of the
annual mean for the HydroBlocks LSM, SMAP L3 and L4, the down-
scaled product, and the in-situ observations. As expected, the spatial
heterogeneity accounted for by HydroBlocks is reflected in the spatial
distribution of the downscaled soil moisture product. The model re-
presented well the wet soil conditions at the valleys and river channels;
as well as the drier agricultural fields surrounding the rivers in the Little
Washita and Little River watersheds, and the high soil moisture spatial
dynamics at the Little River watershed. The SMAP L3 retrievals, how-
ever, had only one or two grid cells covering each of the sites, with no
spatial heterogeneity. SMAP L4 captures well the spatial pattern of drier
and wetter conditions at Little Washita. The downscaled soil moisture
follows the spatial pattern of HydroBlocks; however, the intensities are
adjusted according to the merged SMAP L3 brightness temperature.
Reynolds Creek showed to be the watershed where merging the SMAP
L3 brightness temperature contributed the most. Fig. 6 shows a zoom
box of 10 km by 10 km of the merged soil moisture in each of the
watersheds.

It is worth highlighting that Fig. 5 shows the local impact on soil
moisture of the merging of HydroBlocks and SMAP L3 brightness
temperatures. However, the Gaussian operator (H), used in the

merging, was applied to the brightness temperature within a 36-km
radius from each HRU. In addition, SMAP and HydroBlocks used dif-
ferent clay content and surface temperature ancillary data. Because of
the highly non-linear behavior of the soil dielectric properties, the re-
lationship between the soil moisture before and after the merging is not
always linear.

This spatial heterogeneity, shown in Fig. 5 and Fig. 6, was quanti-
fied in terms of the spatial standard deviation. Fig. 7 shows the dis-
tribution of the spatial standard deviation calculated at each time step
for the in-situ probe and the collocated grid cell of each soil moisture
product. We only calculated the spatial standard deviation at a given
time when at least data of 10 probes and at the respective collocated
grid cells were available simultaneously. SMAP L3 was not included in
the analysis because each watershed only covers 1–2 grids. In com-
parison to SMAP L4, HydroBlocks often showed a higher spatial stan-
dard deviation. This spatial variability from HydroBlocks was also
transferred to the downscaled product. The observed soil moisture
spatial variability at all the watersheds was still much higher than that
estimated by any of the soil moisture products, highlighting the lack of
additional spatial dynamics that are still not being accounted.

In Fig. 8, we summarized the overall performance of the soil
moisture products. The SMAP L3 performance varied significantly
across the watersheds. At Walnut Gulch and Little Washita, SMAP L3
showed low bias, good correlation, and good KGE scores. But it per-
formed poorly at Little River with a strong wet bias. SMAP L4 showed
an overall low ubRMSE, but an overall high RMSE and coefficient of
variations far from optimal, resulting in often the lowest KGE scores.
HydroBlocks, on the other hand, performed well at cold to temperate
and humid condition sites such as Reynolds Creek and Little River; but
with poor performance at Little River and Walnut Gulch. These poor
KGE performances are mostly driven by the bias ratio component,
which is very sensitive to low soil moisture content. Nonetheless, the
temporal dynamics and spatial distribution of the modeled and merged
soil moisture at Walnut Gulch showed reasonable dynamics (Fig. 4 and
Fig. 5). The HydroBlocks model showed overall good skill in terms of
temporal correlation and coefficient of variation. However, the model
consistently overestimates soil moisture at all the sites except Little
Washita.

The downscaled product presented a consistent lower RMSE and
ubRMSE, averaging out the errors in both SMAP and HydroBlocks and

Fig. 6. The merged and downscaled soil moisture at Little River, Little Washita,
Walnut Gulch, Reynolds Creek. Each panel shows the soil moisture zoomed in
to a 10 km by 10 km domain area for a given time step.
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Fig. 7. Distribution of the soil moisture spatial standard deviation. The boxplots
show the distribution of the soil moisture spatial standard deviation at each
time step for the in-situ observations (grey) and the respective collocated grid
cells of SMAP L4 (orange), HydroBlocks LSM (red), and the downscaled (green)
soil moisture products. The spatial standard deviation at a given time was only
calculated when data for at least 10 probes and the respective collocated grid
cells were available simultaneously. The total number of data pairs in time for
each watershed is reported in the bottom right of the graph.
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even improving both products' performance. Merging brightness tem-
peratures observations improved soil moisture temporal correlation and
ubRMSE in all the watersheds. However, the downscaled soil moisture
often added value to the SMAP L3 estimates if the HydroBlocks per-
formance is similar or higher than SMAP L3 estimates; otherwise, the
performance is degraded, such as seen for Walnut Gulch. This was in-
vestigated further in the uncertainty analysis in Section 3.2. Although
the downscaled product did not always perform the best in each metric
individually, we observed an overall improvement of SMAP L3 and
SMAP L4 estimates. The presented merging framework shows the po-
tential to consolidate both SMAP and HydroBlocks estimates with an
overall better accuracy than either independently. With respect to
SMAP L3, the merged soil moisture showed the most substantial im-
provement in the Little River watershed, where the KGE score of SMAP
rose from −0.78 to 0.47.

The soil moisture performance at the in-situ level was evaluated in
terms of the KGE score as a summary metric (Fig. 9). SMAP L3 per-
formance was fairly consistent across all probes in each basin, either
estimating the values very well as in Walnut Gulch or very poorly, as in
Little River, with minimal spatial variability due to its coarse resolu-
tion. SMAP L4 showed to improve SMAP-L3 the performance is most of
the sites, exception for Walnut Gulch. The merged product showed
significant performance improvement in comparison to SMAP-L3 and
SMAP-L4 at most of the in-situ sites. In comparison to HydroBlocks
LSM, the merged product also shows overall improvement, but with
smaller intensities. The exception is the Reynolds Creek, where SMAP-
L3 merging degraded the model performance in some locations, but it
still performed overall better than SMAP-L3 and SMAP-L4.

3.2. Sensitivity analysis of the merging framework

As seen in Fig. 8 and Fig. 9, the performance of the model and sa-
tellite soil moisture estimates varied from watershed to watershed.
When the bias in the model or the satellite soil moisture estimates was
significant, and we have no prior knowledge of which performs better
at a given location, it is difficult to predict if the merged soil moisture
will be better. As mentioned previously, this is a consequence of the
bias between the modeled and satellite brightness temperatures that
leads to non-optimal merging. Here we aim to assess how much the bias
between the satellite and the model brightness temperature at different

temporal scales affects the uncertainty in the merged soil moisture re-
trieval. To this end, we quantified the temporal correlation, bias ratio,
coefficient of variation ratio, and KGE score of the merged soil moisture
when the brightness temperatures were merged using different w1

weights on the instantaneous contributions (via the innovation) and
different w2 weights on the long-term contributions (via the forecast
bias), as expanded in Eq. (7). Fig. 10 shows the results of this sensitivity
analysis on the uncertainties associated with the merging framework
using different temporal scales weights.

From Fig. 10, we can observe that the soil moisture temporal corre-
lation was insensitive to changes in the instantaneous (w1) and long-term
(w2) contributions when merging brightness temperature. However,
when there is a bias between the observed and modeled brightness
temperatures, there was a clear linear relationship that yields an optimal
1.0 bias ratio and variability ratio for a set of w1 and w2 weight pairs.
This linear pattern can be also observed in the KGE score. In terms of the
instantaneous and the long-term contributions of the brightness tem-
peratures differences, the merged soil moisture was particularly sensitive
to the model and satellite estimates at the Little River and Walnut Gulch
watershed. At Walnut Gulch, HydroBlocks showed a wet bias and the
SMAP L3 estimates were more similar to the observations, and as a result,
the merged soil moisture performance was optimal at w1 = 1.0 and
w2 = 0.0. Therefore, forecast bias correction would worse the perfor-
mance at this site. For Little River, however, SMAP L3 showed a very
high soil moisture bias, and HydroBlocks performed better across all
metrics, with estimates very similar to the observations. For this wa-
tershed, the optimal merging performance was found when the forecast
bias was added to the estimates with w1 = 0.5 and w2 = 0.8. Here, we
clearly see that the forecast biases between the estimates favor Hydro-
Blocks, but the non-zero mean anomaly leads to uncertainties in the data
merging. For Little Washita and Reynolds Creek, the brightness tem-
perature and soil moisture biases between HydroBlocks and SMAP were
small, and therefore, the merged soil moisture was less sensitive to dif-
ferent weights on the innovation and forecast bias terms. Although there
is a linear pattern in how KGE varies for w1 and w2 weights in Little River
and Walnut Gulch, the intercept at which the w1 and w2 pair leads to
higher performance of the merged soil moisture estimates varies from
watershed to watershed. Based on the four watersheds evaluated, there is
no optimal temporal weight across all the sites. Thus, the results of this
study were carried out using a 0.5 weight for w1 and w2 as a compromise

Fig. 8. Soil moisture evaluation against in-situ observations. We calculated the watershed spatial average using the soil moisture values at the collocated grid cell of
the in-situ observations. The analysis covers the period between 2015 and 2017. The soil moisture products were evaluated in terms of its long-term of the mean
squared error (RMSE) and the unbiased RMSE (ubRMSE); as well as the bias ratio (β), the variability ratio (γ), and the linear Pearson correlation (ρ), which represents
the components of the Kling-Gupta score (KGE).
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between the instantaneous and the long-term contributions of the dif-
ferences between the observed and the forecasted brightness tempera-
tures. We discuss this in detail in Section 4.3.

4. Discussion

4.1. Overview of the strengths of the downscaling framework

We presented a merging framework to downscale soil moisture to an
unprecedented 30-m spatial resolution. By using field-scale physically-
based land surface modeling, the merged product takes into account the
interaction of soil moisture with elevation, aspect, soil properties, ve-
getation, subsurface water dynamics, and climate. This is a critical
benefit, because simulating land surface processes and these interac-
tions at fine scales lead to an enhanced representation of the water and
energy balances as well as carbon estimates (Piles et al., 2011; Falloon
et al., 2011). These physical interactions are generally not accounted
for when using machine learning and statistical downscaling ap-
proaches (Liu et al., 2017). In addition, our framework merges the di-
rectly observed brightness temperature instead of the post-processed
soil moisture retrieval, which is subject to uncertainties and non-line-
arities within the RTM (discussed later in this subsection). The com-
putational efficiency of the proposed framework is also a significant
advantage. By clustering high-resolution proxies of the drivers of the
landscape heterogeneity into HRUs, HydroBlocks efficiently accounts
for most of the landscape spatial variability with a minimal computa-
tional cost, as demonstrated in Chaney et al. (2016).

In the context of using remote sensing to monitor hydrological
processes, this work major contribution is a framework capable of
modeling and merging hydrological estimates from field-scale to con-
tinental domains. Merging and potentially assimilating remotely sensed
observations across different scales can contribute to elucidate the
scaling behavior of hydrological processes from the point scale to the
footprint scale of spaceborne sensors (Western et al., 2002). Proper
characterization of the scaling behavior of hydrological processes, such
as soil moisture, can aid the calibration and evaluation of RTMs and
satellite retrieval products. Although here we introduce a merging and
downscaling framework applied to each time step independently, this

work paves the way towards a hyper-resolution earth system modeling
for multiscale dynamic data assimilation. The proposed HRU-based
merging could be implemented with the system states and error cov-
ariances being updated sequentially, as it is done using traditional and
ensemble Kalman filters, as well as other similar dynamic assimilation
approaches (Lievens et al., 2016; Reichle et al., 2018a).

4.2. Uncertainties and caveats of the approach

Despite the promising results and potential further applications, the
merging framework has limitations. In this section, we discuss the im-
plications of the weaknesses of the land surface and radiative transfer
model, as well as the uncertainties of the corresponding ancillary data.

4.2.1. Land surface modeling limitations
Modeled hydrological processes, including soil moisture, can be

sensitive to uncertainties in the topography, land cover, soil properties,
and meteorological input data, as well as to deficiencies of the physical
process parameterizations in the LSM. Meteorological inputs, especially
precipitation, are known to be one of the largest sources of un-
certainties (Wanders et al., 2012; Beck et al., 2016). Although the 3-km
NLDAS2-derived dataset accurately represented the temporal dynamics
of the soil moisture peaks (Fig. 4), there is an overall wet bias in the
model estimates (Fig. 7). Merging in-situ precipitation observations to
the meteorological input data can reduce the soil moisture un-
certainties, as demonstrated in Chaney et al. (2015). In addition, there
are uncertainties related to the soil properties characterization and the
process-representation of the soil-water hydraulics, as both control soil
moisture levels and dry-down dynamics. The impact of these limitations
is quantified in terms of the ubRMSE and the coefficient of variation in
Fig. 7. The soil moisture estimates can also be impacted by mis-
classification of land cover as well as improper phenology and root
structure representation (Dahlin et al., 2015), especially in dry condi-
tions. In terms of model representativeness, a significant source of un-
certainties is the lack of representation of human activities, such as
irrigation, reservoir operation, groundwater pumping (Wanders and
Wada, 2015; Pokhrel et al., 2017), that can dramatically influence soil
moisture dynamics, especially at fine scales.
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Fig. 9. KGE score of the soil moisture products evaluated against each in-situ probe. The columns show the KGE score for SMAP L3, the SMAP L4, HydroBlocks LSM,
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downscaled soil moisture and the SMAP L3, the SMAP L4, and the HydroBlocks LSM. The increase in performance is shown in blue.
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While merging SMAP observations can help to better estimate soil
moisture over largely irrigated domains, an alternative is to use more
statistical data-driven approaches, such as proposed in Fang et al.
(2019) and Ojha et al. (2019). More generally, a common way to
overcome data and model limitations is to calibrate these soil-water
parameters against soil moisture observations, river discharge, or even
fine-scale, satellite-derived land surface temperature. Previously, Cai
et al. (2017) showed that HydroBlocks soil moisture estimates have
excellent performance under calibrated conditions. Here, however, we
choose to follow an independent evaluation to assess the merged pro-
duct skill at locations where there are high uncertainties in the ancillary
data, or there is a lack of in-situ observations of soil moisture. A po-
tential alternative to reduce the LSM uncertainties is the use of en-
semble model simulations and ensemble Kalman filtering to account for
the distribution of possible soil moisture states. However, this requires
multiple LSM-RTM simulations and hence, will be computationally
costly.

4.2.2. Radiative transfer modeling limitations
In terms of the radiative transfer modeling, uncertainties are mainly

due to the brightness temperature observations and ancillary remote
sensing data used to parameterize the Tau-Omega brightness tem-
perature RTM. The uncertainties in the measurements are linked to,
among others, the inclination angle, the sensor penetration depth, the
differences between the brightness temperature measured using the
vertical and horizontal polarization, as well as the nature of the sensor
retrieval that needs to be further gridded to a regular grid (O'Neill et al.,
2018). Similar to LSMs, soil properties can influence the brightness
temperature and soil moisture retrievals, as microwave measurements
can penetrate deeper at increasing soil sand content and the presence of
large macropores (Owe and Van de Griend, 1998; Casa et al., 2013).
Soil emissivity properties also depend on accurately specified clay
content for proper soil moisture estimates (Mironov et al., 2009). Ve-
getation and land cover characteristics also play a role, including un-
certainties derived from land cover class, vegetation index, albedo,
vegetation optical depth, and surface roughness. These ancillary data
are often retrieved at a high resolution but aggregated to a coarser scale
to match the footprint of the brightness temperature sensor. This is can
be an issue for hyper-resolution RTM-based retrieval algorithms, as
coarse-scale aggregated ancillary data (i) underestimates the spatial
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Fig. 10. The sensitivity of the merged soil moisture to changes in the contributions of the instantaneous and the long-term differences in model and observed
brightness temperature. The sensitivity was performed by varying the weights in the innovation term (w1) and the forecast bias term (w2) when merging
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heterogeneity of the landscape, and (ii) it may induce processes in-
consistencies when data is combined with fine-scale LSM estimates,
such as the soil moisture and surface temperature. We expect that
higher resolution and better accuracy of albedo, vegetation optical
depth, and roughness length would potentially lead to improvements in
downscaled soil moisture performance. In addition, there are limita-
tions with the Tau-Omega RTM itself. Schwank et al. (2018) discuss the
current implementation of SMAP and SMOS Tau-Omega RTMs and its
limitations over dense vegetation sites, among others. Due to these
limitations, brightness temperature estimates from RTMs can be biased,
requiring calibration to properly represent the soil moisture temporal
dynamics (De Lannoy et al., 2013). In the context of hyper-resolution
RTM modeling, further work is required to quantify the sensitivity and
uncertainties of each of these coarse-scale RTM ancillary data within
the HydroBlocks-RTM framework. Ideally, coupling HydroBlocks to an
RTM that has been calibrated for fine-scale RTM ancillary data would
improve the consistency between the modeled hydrological variables
and the ancillary data, this may lead to improvements in the brightness
temperature estimates, as well as improved performance of the final
downscaled soil moisture.

4.3. General results and implications for soil moisture applications/
transferability

The proposed merging and downscaling framework represent the
spatiotemporal dynamics of the soil moisture observations. As shown in
Fig. 4 and Fig. 9, at the point and watershed levels, the merging fra-
mework consistently improves the SMAP L3 estimates. In addition, the
downscaled product is able to represent the soil moisture spatial
variability; with most of the contribution coming from HydroBlocks'
spatial representation of the landscape heterogeneity (Fig. 5 and Fig. 7).
An exception to the overall good performance is for the Walnut Gulch
watershed, where neither the model, the merged soil moisture, and
SMAP L4 was able to resolve the relatively high soil moisture bias ratio
with the same performance of SMAP L3. SMAP L3 estimates are,
however, known for their overall dry bias (Chan et al., 2018), and
therefore tend to perform better in arid conditions. The lack of model
skill in simulating hydrological processes in dry conditions is a general
limitation of LSMs (Beck et al., 2016, 2017; Poltoradnev et al., 2018)
but it can also be linked to biases in the meteorological estimates and
the soil-water hydraulics limitations mentioned above. Further work is
needed to understand if these results can be generalized across a
broader set of dry environments.

The results showed that the merged soil moisture can be sensitive to
changes in the contribution of the instantaneous and the long-term
differences between the model and observed brightness temperatures
(Fig. 10). This is the case for the Little River and Walnut Gulch wa-
tersheds where there was significant soil moisture and brightness
temperature bias between the estimates, albeit that HydroBlocks per-
formed very well on Little River, and SMAP performed very well on
Walnut Gulch. In this context, at Walnut Gulch the instantaneous
contributions (via the innovation term) provide more benefit to the
merging than the long-term contributions (via the forecast bias term).
Conversely, at Little River the merging benefited more from the long-
term contributions than the instantaneous contribution. While the
model and satellite performance vary from place to place, we adopted a
0.5 w1 and w2 weight as a compromise between the temporal con-
tribution of the instantaneous and the long-term differences between
observed and modeled brightness temperature. This pair of weights
resulted in an overall improvement in SMAP performance, as shown in
the evaluation results in Fig. 9 and Fig. 10.

The impact of the forecast bias between the model and satellite
observation on the merged soil moisture has also been identified by
previous SMAP and SMOS studies (Reichle et al., 2004; De Lannoy
et al., 2007; Kumar et al., 2012). Similarly, a typical approach is to
rescale the soil moisture time series by subtracting the standardized

forecast bias from the estimates before the assimilation (Reichle et al.,
2004). For this study we used a 0.5 weight, however, a more consistent
and transferable way forward is to consider which aspects of the
landscape, hydroclimate, and human activities (i.e. irrigation) lead to
the instantaneous and long-term differences between the model and
satellite observations. If the contribution of the instantaneous and long-
term brightness temperature differences can be modeled based on these
aspects, this can potentially reduce the sensitivity of the merged soil
moisture to uncertainties in the model and satellite estimates (Kolassa
et al., 2017). In addition, extending the evaluation over a broader do-
main of soils, land cover, and climate conditions could provide further
guidance on the skill and uncertainties of the soil moisture products, as
shown in Draper et al. (2012).

5. Summary and conclusions

Soil moisture monitoring and prediction have essential implications
for water management, but it is also one of the most challenging surface
processes to predict. It varies highly in space and time, as a result of
being tied to the spatial heterogeneity of the landscape in terms of to-
pography, soil properties, land cover, and variations in microclimates.
Several statistically and physically-based techniques to downscale soil
moisture have been proposed (e.g., Peng et al., 2017), including using
fully distributed land surface models (e.g. Sahoo et al., 2013; Garnaud
et al., 2016). However, previously proposed downscaling techniques
often do not physically represent the land surface processes in an in-
tegrated manner (i.e., statistical and machine learning based models) or
do not account for the fine-scale heterogeneity of the landscape (i.e.,
coarse-scale global LSMs). In addition, model-based downscaling tech-
niques relying on fully distributed hydrological models can be ex-
tremely computational costly when applied at fine-scales over con-
tinental domains.

In this work, we introduced a physically-based downscaling fra-
mework that combines hyper-resolution land surface modeling, radia-
tive transfer modeling, and spatial Bayesian merging. Specifically, we
take advantage of the HRU concept of hyper-resolution modeling to
reduce the dimensionality of the system. This leads to efficient mod-
eling and merging of remotely sensed hydrological processes. The
proposed hyper-resolution assimilation concept can be extended to
more robust multi-scale dynamic assimilation using, for instance,
Ensemble Kalman filter. It can also be extended to assimilate other
remotely sensed retrievals, with or without the need for coupling the
LSM with an RTM. For instance, this HRU-based merging framework
can be applied to assimilate the radiative observations via an RTM, as
for retrievals of soil moisture, land surface temperature, and snow
water equivalent. Or it can be applied to directly assimilate the re-
motely sensed retrievals without coupling the LSM to an RTM, as for
estimates of evapotranspiration, canopy temperature, vegetation in-
dices (i.e. LAI), groundwater storage, among others.

Here, we demonstrated this framework by downscaling SMAP soil
moisture estimates to an unprecedented 30-m spatial resolution by
coupling HydroBlocks LSM to a Tau-Omega RTM. The downscaled
framework showed excellent performance in accounting for the soil
moisture temporal dynamics and spatial heterogeneity. When com-
pared to in-situ observations, the downscaled product showed a con-
sistent overall high correlation above 0.81 and average KGE scores of
0.56, with better performance than SMAP-L3 and SMAP-L4 overall. We
also quantified the sensitivity of the merging framework to the relative
contribution of the instantaneous and the long-term differences in
model and observed brightness temperature. The sensitivity analysis
was performed by varying the weights in the innovation and forecast
bias terms when merging HydroBlocks and SMAP brightness tempera-
ture. We found that a balance between the temporal contribution of the
instantaneous and the long-term differences in brightness temperature
yields an overall good soil moisture KGE score with added value to the
SMAP estimates.
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The proposed merging framework leverages SMAP potential by
providing high-resolution and accurate soil moisture estimates that are
relevant for field-scale water resources decision making. For instance,
30-m soil moisture data can improve estimates of agricultural yields
and water demand at field scale (Ines et al., 2013; Fisher et al., 2017;
Zhao et al., 2018; Waldman et al., 2019). If we fully trust SMAP esti-
mates and do not bias correct the brightness temperature estimates, the
30- downscaled soil moisture can help track the large-scale impact of
human activities, such as irrigation (Mathias et al., 2017; Lawston et al.,
2017; Dirmeyer and Norton, 2018). The spatiotemporal distribution of
soil moisture can help monitoring the spatial distribution of species
(Tromp-van Meerveld and McDonnell, 2006; Reich et al., 2018), and
epidemic diseases (Beck et al., 2000; Rinaldo et al., 2012). By taking
into account the fine-scale variability of soil moisture extremes, fine-
scale soil moisture can improve the forecast skill of extreme hydrologic
events such as droughts (van Dijk et al., 2013; Sheffield et al., 2014;
Sadri et al., 2018; Blyverket et al., 2019); wildfires (Taufik et al., 2017);
as well as flooding and landslides by providing high-resolution esti-
mates of antecedent soil moisture conditions (Ray and Jacobs, 2007;
Pelletier et al., 1997). Fine-scale remotely sensed soil moisture esti-
mates can also help better quantify the coupling between the surface
and the atmosphere (Guillod et al., 2015; Taylor et al., 2012); as well as
improve the soil moisture initialization conditions for numerical
weather forecast systems (Dirmeyer and Halder, 2016).

The physically-based downscaling framework presented in this
study allows for bridging the gap between coarse-scale satellite re-
trievals and fine-scale model simulations as we move towards “every-
where and locally relevant” prediction of hydroclimate processes. In
future work, there is potential to expand this analysis over continental
domains and assess the skill of the downscaling framework over a
broader range of soil properties, topography, land cover, and hydro-
climate conditions, as well as its applicability in helping solve key water
resources challenges linked to soil moisture estimates.
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