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A B S T R A C T   

Smallholder agriculture is critical for current and future food security, yet quantifying the sources of smallholder 
yield variance remains a major challenge. Attributing yield variance to farmer management, as opposed to soil 
and weather constraints, is an important step to understanding the impact of farmer decision-making, in a 
context where smallholder farmers use a wide range of management practices and may have limited access to 
fertilizer. This study used a process-based crop model to simulate smallholder maize (Zea mays) yield at the 
district-level in Zambia and quantify the percent of yield variance (effect size) attributed to soil, weather, and 
three management inputs (cultivar, fertilizer, planting date). Effect sizes were calculated via an ANOVA variance 
decomposition. Further, to better understand the treatment effects of management practices, effect sizes were 
calculated both for all years combined and for individual years. We found that farmer management decisions 
explained 27–82 % of total yield variance for different agro-ecological regions in Zambia, primarily due to 
fertilizer impact. Fertilizer explained 45 % of yield variance for the average district, although its effect was much 
larger in northern districts of Zambia that typically have higher precipitation, where it explained 72 % of yield 
variance on average. When fixing a specific fertilizer amount, the “low-cost” management options of varying 
planting dates and cultivars explained 20–28 % of yield variance, with some regional variation. To better un
derstand why management practices impact yield more in particular years, we performed a correlation analysis 
comparing yearly management effect sizes with four meteorologically based variables: total growing season 
precipitation, rainy season onset, extreme heat degree days, and longest dry spell. Results showed that fertilizer’s 
impact generally increased under favorable weather conditions, and planting date’s impact increased under 
adverse weather conditions. This study demonstrates how a national yield variance decomposition can be used to 
understand where specific management interventions would have a greater impact and can provide policymakers 
with quantification of soil, weather, and management effects. In addition, the variance composition can easily be 
adapted to a different range of management inputs, such as other cultivars or fertilizer quantities, and can also be 
used to assess the effect size of management adaptations under climate change.   
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1. Introduction 

Smallholder agriculture is a key component of food security in the 
developing world. Recent studies estimate that about 30 % of global 
food production is provided by smallholder farms (defined as farms < 2 
ha) (Ricciardi et al., 2018), but their relative share in food production 
varies substantially between regions. This is particularly true in 
sub-Saharan Africa (SSA), where smallholder farmers represent about 80 
% of all farmers and about 40 % of farmland (Lowder et al., 2016). As 
smallholder farms in SSA are primarily rainfed, they are particularly 
vulnerable to climate shocks (Müller et al., 2011). In addition, soil 
constraints can significantly impact potential yields. Acidic soils may 
limit crop response to fertilizer (Burke et al., 2017) and shallow soil 
rooting depth may also limit crop yields (Guilpart et al., 2017). Overall, 
realized maize (Zea mays) yields in SSA are less than 20 % of their po
tential, among the lowest values globally (Lobell et al., 2009). Increasing 
the resilience of Africa’s smallholder farmers while increasing produc
tivity is essential for this region to become food self-sufficient (Ittersum 
et al., 2016) and to meet its rapidly increasing demand (Searchinger 
et al., 2015). 

An important first step to achieve these objectives is to understand 
the degree to which the key factors that govern crop productivity (e.g. 
soil nutrients, rain, and primary management decisions, such as cultivar 
selection and fertilization rates) vary over time and space, and how these 
factors affect crop yield (Ittersum et al., 2013). However, the effect of 
smallholder management on yield has been difficult to quantify for 
several reasons. First, smallholder farmers use a wide variety of infor
mation and heuristics to decide, for example, planting date and cultivar 
choice (Waldman et al., 2019, 2017), but the effectiveness of farmers’ 
choices for these inputs is unclear. Smallholder farmers may not seek to 
optimize yields when making management decisions, instead priori
tizing the need to harvest crops early for household food security 
(Thierfelder et al., 2016), and adapting risk-averse strategies for coping 
with rainfall variability (Cooper et al., 2008). Farmers also may have 
unequal access to farm subsidies (Mdee et al., 2020), imperfect infor
mation on management inputs such as hybrid seed (Waldman et al., 
2017), and may experience delays in access to subsidized fertilizer 
(Mubanga and Ferguson, 2017). More expensive and time-consuming 
management methods used by commercial farmers, like soil rehabili
tation, irrigation, and intensive fertilizer use, also may be inaccessible or 
mis-adopted by the poorest of smallholders (Burney and Naylor, 2012; 
Harris and Orr, 2014). 

Second, there is a general scarcity of field-level data for smallholder 
agriculture. Field-level self-reported yields are often inaccurate (Paliwal 
and Jain, 2020; Carletto et al., 2016; Gourlay et al., 2019; Paliwal and 
Jain, 2020) and agricultural censuses may collect data at scales (e.g. 
district) that are too coarse to capture the impact of field-level man
agement decisions. 

Third, variability in soil properties and weather conditions can in
fluence management’s effect on yield (Lobell et al., 2002). For example, 
acidic soils may limit the effectiveness of fertilizer application in SSA 
(Burke et al., 2017). Farmers may adopt different strategies to cope with 
these soil and weather conditions, such as using differential manage
ment intensities between fields of varying fertility (Tittonell et al., 2007; 
Vanlauwe et al., 2015), and sowing crops earlier to reduce the impact of 
heat stress (Jain et al., 2017). 

Thus, smallholder farmer management decisions are made in the 
context of multiple farmer priorities, varying degrees of knowledge and 
access to inputs, critical soil and weather constraints, and data scarcity. 
Quantifying the impact of smallholder management on yield is chal
lenging in this context, as different methods and data sets each have 
their own limitations. Remote sensing (RS) based models (Lobell et al., 
2015; Burke and Lobell, 2017; Jain et al., 2017; Jin et al., 2019) estimate 
the effect of soil, weather, and management on yield over large areas, 
but these studies have several sources of uncertainty due to cloud cover, 
small field size relative to spatial resolution, and the need for ground 

calibration data. Field trials provide a high level of control and precision 
for inputs and yield measurements (Chisanga et al., 2015; Garcia et al., 
2009), but trials can only compare a small number of management op
tions over a few sites. Farmer surveys are invaluable sources that define 
realistic ranges of management parameters, particularly in smallholder 
environments (e.g. Waldman et al., 2017 and Giroux et al., 2019). 
However, such surveys are often limited in spatial scope due to cost, and 
farmer self-reported yields may be inaccurate (Paliwal and Jain, 2020). 
Surveys thus represent an essential but incomplete answer to data 
scarcity for smallholder agriculture. As mentioned above, national and 
sub-national agricultural statistics (e.g. FAOSTAT) can be used to un
derstand impacts of soil, weather, and management at broad scales 
(Lobell and Asner, 2003; Lobell and Field, 2007; Ben-Ari and Makowski, 
2014; Chabala et al., 2015; Iizumi and Ramankutty, 2016; Zhao et al., 
2018; Vergopolan et al., 2021), but lack the field-level detail needed to 
link specific management practices to yield outcomes. 

Physical-based, or mechanistic, crop models (hereafter simply “crop 
models”) are widely used to study the effects of soil, weather, and 
management factors on crop yield (Lobell et al., 2013; Guan et al., 2017; 
Frieler et al., 2017). Like other methods, crop models have a unique set 
of advantages and limitations. Crop models are limited in that their 
outputs represent potential yield in the absence of pests and disease 
(Estes et al., 2013), and model results must be interpreted in this 
context. Moreover, models must also be well-calibrated and use inputs 
suitable for smallholder agriculture (Grassini et al., 2015). Several 
recent studies have provided guidelines for using crop models in 
data-scarce environments (Grassini et al., 2015; Kersebaum et al., 2015). 
Despite these potential limitations, crop models have the key advantage 
of being able to simulate many different soil-weather-management 
combinations, at a scale not possible by other methods (Shelia et al., 
2019), with precise control of inputs and measurement of outputs. This 
precision allows yield variance to be directly attributed to changes in 
inputs, and not to measurement error or uncaptured variables. 

In this study, we leveraged this advantage of crop models in an 
analysis designed to answer the question of how much control small
holder farmers typically have over their yields. Specifically, we used the 
Decision Support System for Agrotechnology Transfer (DSSAT) (Jones 
et al., 2003; Hoogenboom et al., 2019a, 2019b) to simulate maize yields 
in response to three varying farmer management inputs (cultivar, fer
tilizer, planting date), while varying soil and weather conditions at the 
district scale in Zambia. The management practices are representative of 
smallholder maize farmers across Zambia’s three agro-ecological re
gions, including maize cultivars previously calibrated in Zambia for use 
in DSSAT (Chisanga et al., 2020). 

We used Analysis of Variance (ANOVA) to quantify the effects of 
each of the five inputs (cultivar, fertilizer, planting date, soil, weather) 
on yield, which allowed us to quantify the effect of management inputs 
as compared to soil and weather conditions. We also used a correlation 
analysis to examine how weather conditions relate to the importance of 
soil and management inputs in different years. 

We focused our investigation on maize farming in Zambia for several 
reasons. First, smallholder maize agriculture in Zambia is critical to food 
security domestically and in the region, with Zambia having one of the 
highest self-sufficiency ratios for cereal production in SSA (Ittersum 
et al., 2016). Second, smallholder agriculture in Zambia, with predom
inantly rainfed agriculture, a well-defined rainy season, high yearly 
climate variability, and high variance in management practices (Wald
man et al., 2017) is representative of smallholder agricultural conditions 
in other parts of SSA (Sheahan and Barrett, 2017). This comprehensive 
approach and the resulting insights may thus be applicable to other 
smallholder agriculture systems in SSA and can provide policymakers 
with a high-level understanding of regional drivers of yield variance. 
Our findings may also help identify both short-term management in
terventions and longer-term adaptations to improve resilience to soil 
and weather constraints. 
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2. Data and methods 

2.1. Study area 

Due to its relatively low population density and abundant arable 
land, Zambia is a potential site of agricultural intensification in order for 
Africa to become food self-sufficient (Ittersum et al., 2016). Maize is the 
dominant crop in Zambia, and maize production is dominated by 
small-scale farmers (Chisanga et al., 2015). While Zambia has among the 
highest levels of available potential cropland, the economic returns on 
new cropland may not be as high as initially thought (Chamberlin et al., 
2014), and thus understanding the degree to which farmer management 
practices affect yield is critical. Zambia maize yields also fall far below 
those of other maize exporting countries (Burke et al., 2012), and the 
gap between realized and potential maize yield remains high in both 
Zambia and SSA generally (Lobell et al., 2009; Deininger and Byerlee, 
2011). Understanding yield variance in Zambia would thus allow poli
cymakers to determine the impact of specific management interventions 
(e.g., fertilizer subsidies, extension agency recommendations) and how 
this impact varies spatially. 

Climatically, Zambia has a predominantly humid subtropical climate 
type, with a well-defined summer rainy season (November – April). 

Zambia is divided into 3 agro-ecological regions (Fig. 1a), with 
increasing precipitation and longer growing seasons further north. 

2.2. Crop simulations 

Crop simulations have been used to better understand smallholder 
agriculture (Jin et al., 2019; Tovihoudji et al., 2019) and can effectively 
increase the number of pseudo-observations in data-scarce regions. We 
used a combination of local datasets and expertise to inform input se
lection. We obtained information on common management practices 
from information provided by the Zambia Agricultural Research Insti
tute (ZARI), from previously published studies in Zambia (Burke et al., 
2017; Chisanga et al., 2020), and from prior surveys of farming house
holds (e.g. Waldman et al., 2017). In particular, we used observations 
from the Household Income Consumption and Production Survey 
(HICPS) (Hadunka and Bayliss, 2022) to inform the range of manage
ment practices typical of smallholder maize farming in Zambia. The 
HICPS data include data on cultivar choice, planting date, and fertilizer 
use of about 1200 smallholder maize farmers across all agro-ecological 
regions of Zambia. 

Fig. 1. (a) Zambia map showing average pre
cipitation in the growing season (Nov.- May) 
(Source: MSWEP). Zambia’s three agro- 
ecological regions are shown with thick bor
ders. (b) Factorial design of crop simulations. 
Red arrows show one possible permutation of 
soil, weather, and management inputs. Soil and 
weather inputs are district-specific, while 
management inputs are standard across dis
tricts. Planting dates vary by agro-ecological 
region. (c) Crop simulation (DSSAT) variance 
decomposition workflow. Fixing weather input 
results in yearly effect sizes, which are then 
used in a correlation analysis to understand the 
effect of derived weather variables (e.g. 
growing season precipitation).   
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2.2.1. Experiment design 
We used the Decision Support System for Agrotechnology Transfer 

(DSSAT) crop model to simulate crop growth and yield. DSSAT is a 
process-based model which takes weather, soil, and management inputs 
to simulate the biophysical processes that drive crop growth. DSSAT 
simulations can provide both daily and seasonal estimates of crop 
growth, such as biomass, leaf area index (LAI), and grain yield. Our 
analysis looked at the effect of changing soil, weather, management 
practices, and input parameters on end-of-season yield estimates. 

The crop simulations used a factorial design (Fig. 1b) that iterated 
through every permutation of weather-year, soil type, and management 
(cultivar, fertilizer, planting date) inputs for each district (Table 1). The 
factorial design allowed for the calculation of yearly effect sizes by fixing 
weather and allowing other inputs to vary, and the examination of ef
fects when fertilizer level was fixed. The spatial scale of the crop model 
simulations was the 72 pre-2013 district boundaries of Zambia. Using 
the pre-2013 boundaries also allowed for backward compatibility with 
government agricultural surveys, like the Crop Forecast Survey (CFS) 
and Post-Harvest Survey (PHS), and ready comparison with previous 
agricultural studies in Zambia (Zhao et al., 2018); (Vergopolan et al., 
2021). 

2.2.2. Input data for crop simulations 
Both the soil and weather inputs for crop modeling leveraged new 

fine-scaled gridded data sets that allow for spatial modeling in Sub 
Saharan Africa (SSA). For weather data, we used Multi-Source 
Weighted-Ensemble Precipitation (MSWEP) data (Beck et al., 2017a) 
for precipitation inputs, and Princeton Global Forcings (PGF) data 
(Sheffield et al., 2006) for other weather inputs (temperature, solar ra
diation, wind, pressure, and specific humidity). MSWEP combines high 
quality precipitation from seven datasets derived from gauge observa
tions, satellite remote sensing, and atmospheric model reanalysis. 
MSWEP and PGF were jointly downscaled to a 3-hr 5-km resolution in 
Zambia for consistency between water and energy fluxes and then 
converted to daily values for use in the DSSAT crop model. These data 
sets have been applied (separately) previously in DSSAT simulations 
(Elliott et al., 2014; Glotter and Elliott, 2016; Yang et al., 2020). To 
represent natural weather variability and to ensure comparability be
tween simulations, weather data were extracted at district centroids 
within district boundaries for 37 growing seasons (1979–80 through 
2015–16). 

Soil inputs were taken from the Global High-Resolution Soil Profile 
Database for Crop Modeling Applications data set developed specifically 
for use in the DSSAT crop model (Han et al., 2019). This data set in
tegrates gridded data from the SoilGrids 1 km dataset (Hengl et al., 
2014) and HarvestChoice HC27 soil profiles. The SoilGrids profiles are 
the most extensive gridded soil product available for Africa, based on 
over 100,000 soil sample locations and using a regression-kriging 
method with elevation, land cover, and satellite covariates for model 

fitting. This soil dataset uses a 5 arc-minute resolution (~10 km). Vor
onoi polygons were used to subdivide each district’s area and all grid 
points whose polygon contained at least 5 % cropland were retained. 
After this filtering, candidate soil locations were ordered by the pro
portion of cropland area within their respective Voronoi polygon. The 
30 candidate soil locations with the higher proportion of cropland area 
in each district were retained. For districts with fewer than 30 candidate 
soil locations, all soil locations were retained. One district, Luangwa had 
no such candidate points, but this district is primarily contained in the 
Lower Zambezi National Park. Cropland masking was based on the 
Global Food Security Support Analysis Data (GFSAD) 30-meter cropland 
mask (Xiong et al., 2017). For mapping purposes, the simulations of the 
neighboring district (Chongwe) were duplicated and used for Luangwa. 
All other districts had at least 4 candidate soil points. For reference, 
Fig. S1 shows a sample soil profile from Choma district in southern 
Zambia. 

We used three medium-maturity cultivars (ZMS606, PHB30G19, 
PHB30B50) that have been previously calibrated for Zambia. These 
cultivars were selected due to the extensive field trials and extensive 
data collection used in their calibration, including weather, soil, man
agement, and crop yield/biomass data (Chisanga et al., 2020). Although 
the use of early-maturing cultivars is increasing, medium-maturing 
cultivars were the most commonly used in Zambia over the past 
decade (Blekking et al., 2021). The ZMS cultivar is produced by Zam
Seed and the PHB cultivars are produced by Pioneer, with all cultivars 
having a typical maturity between 120 and 130 days (Chisanga et al., 
2020). These cultivars are also used by smallholder farmers across all 
three agro-ecological regions (Chisanga et al., 2021). 

Cultivar selection was made after extensive review of published 
studies on cultivars (Chisanga et al., 2021). We used three conditions for 
selection of cultivars: (i) calibration within Zambia or neighboring 
country; (ii) all cultivars should be calibrated within a single set of field 
trials to assure consistency in measurement and crop management; (iii) 
calibration should include detailed collection of meteorological, soil, 
management, crop phenology, biomass, and yield data. Based on these 
constraints, we chose the three medium maturing cultivars mentioned 
above. Cultivars from other studies were not used because the studies 
only included two cultivars (Corbeels et al., 2016), were not based in 
southern African (e.g. Adnan et al., 2020) or did not include cultivar 
coefficients (Tesfaye et al., 2016). We also considered using data from a 
limited set of field trials in three Zambia districts (Choma, Kafue, 
Kabwe). These trials used early, medium, and late maturing cultivars, 
however the field data collected were not sufficiently detailed for a 
robust calibration of cultivar parameters in DSSAT. We considered the 
large difference in yield potential for these cultivars to be an unrealistic 
of smallholder cultivar choice. We have added a brief discussion of the 
variance decomposition for these alternative cultivars in Section 4.3. 

Using three medium maize cultivars of similar maturity also reflects 
the difficulty of cultivar choice for smallholder farmers in Zambia in a 
context of incomplete information (Blekking et al., 2021). Two of the 
cultivars used (ZMS606 and PHB30G19) were among the most common 
cultivars used in a previous survey in the Choma district (Waldman 
et al., 2017) and were also well represented among primary plantings in 
the HICPS 2016–17 data set (~ 3 % each). The PHB30B50 cultivar is 
designed for commercial operations growing under both rainfed and 
irrigated conditions. 

We note that the cultivar effect sizes calculated in the variance 
decomposition are dependent on the specific cultivars used (similar to 
how other effect sizes are dependent on the specific input levels used). 
We discuss these caveats and how to interpret effect sizes in greater 
detail in the Discussion section. The DSSAT phenology and growth co
efficients for the cultivars used are listed in Table 2. 

Three levels of fertilizer applications were used in all districts, rep
resenting 80, 160, and 240 kg/ha of top dressing as Urea (46 % N) at a 
depth of 2 cm, with applications at 24 and 37 days after planting (DAP). 
The same quantities were applied as basal fertilizer (compound D [N-P- 

Table 1 
Levels of input variables used for DSSAT crop simulations. One crop simulation 
was run for each unique combination of input variables. In total, there are about 
4–30k simulations per district (all permutations of soil, weather, and manage
ment inputs).  

Input 
variable 

Levels 

Weather 37 weather-years extracted at district centroid for seasons starting in 
1979–2015. 

Soil profiles 4–30 soil profiles per district. Profiles are selected based on highest 
percent cropland near grid point. 

Cultivar 3 medium varieties suitable for all AER (120–130 days to maturity) 
Fertilizer 3 fertilizer levels (80, 160, 240 kg/ha each of urea and Compound 

D) 
Planting Date 3 planting dates determined by AER. (Nov.16, Dec. 16, Dec.31 for 

AER 1 & 2; Dec.1, Dec. 31 for AER III) 
Total simulations per district: ~ 4–30k  
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K: 10–20–10]) at a depth of 5 cm at planting. These quantities were 
selected after consultation with Zambian agronomical experts, and 
consideration of the following observations. First, these two fertilizer 
types are by far the most commonly applied in Zambia (Burke et al., 
2017) and are supported by the Fertilizer Input Support Program (FISP), 
which provides 3 bags each (150 kg) of Urea and Compound D to 
farmers. Given the government support for fertilizer subsidies, we 
excluded especially low fertilizer quantities. Second, similar ranges have 
been used in previous studies in Zambia (e.g., 120–240–360 kg/ha, 
Chisanga et al., 2020). The Crop Forecast Survey from 2006 to 2011 also 
found that fertilizer users applied on average 150 kg total fertilizer per 
ha (Burke et al., 2017), which is at the lower end of our scale. The HICPS 
2016–17 survey found the median and 95th percentile of fertilizer 
application to be 100 and 250 kg/ha for top dressing application, with 
the same values for basal fertilizer. Given these ranges, we decided upon 
the quantities of 80, 160, and 240 kg/ha for each of urea (N-P-K: 
46–0–0) and compound D (N-P-K: 10–20–10). These values are referred 
to as low, medium, and high fertilizer rates. 

Planting dates were determined by agro-ecological regions (AERs) 
based on ZARI knowledge of management practices. For AER III 
(northern Zambia), dates of Nov. 1, Dec. 1, and Dec. 31 were used (days 
305, 335, 365). For AERs I and II (central and southern Zambia), 
planting dates Nov. 16, Dec. 16, and Dec. 31 were used (day 320, 350, 
365). Planting dates were not adjusted for leap years. These dates 
correspond with most maize planting dates as determined by household 
surveys (e.g. (Waldman et al., 2017) for Choma district; HICPS 2016–17 
for all regions). 

The factorial design included 37 years of weather data (for growing 
seasons starting in 1979–2015), 4–30 soil profiles per district, three 
cultivars, three levels of fertilizer input, and three planting dates 
determined by AERs. Running all permutations of input variables 
resulted in approximately 4–30 thousand simulations per district 
(Table 1). 

2.3. Assessing primary sources of yield variance 

We decomposed the variance in DSSAT simulated yields using an 
Analysis of Variance (ANOVA) sum of squares method, which provides 
the ability to: (i) consider the effects of multiple inputs simultaneously, 
and (ii) calculate effect sizes for categorical input variables. With the 
ANOVA variance decomposition, effect sizes for different inputs (rep
resenting the percent of yield variance explained) can be added 
together, and thus the total effect of all management inputs can be 
calculated as the sum of individual management effect sizes. 

In the ANOVA variance decomposition, the variance explained by an 
input variable is based on how overall variance in a response variable (e. 
g. crop yield) can be explained by groupings of an input variable. This 
effect size is represented by eta-squared (η2), the ratio of between-group 
sum of squares to the total sum of squares, which provides an estimate of 
the percent of variance explained by grouping of an input variable 

(Cohen, 1973). Fig. 2 illustrates an example of η2 calculation for nine 
observations and a single grouping variable (soil type). For the DSSAT 
crop simulations, we simultaneously considered five potential grouping 
variables (cultivar, fertilizer, planting date, soil type, and weather-year). 

2.3.1. Global effect sizes 
“Global” effect sizes (η2

g ) are calculated from all crop simulations in 
a district and represent the proportion of yield variance explained when 
weather, soil, and management inputs vary among all possible permu
tations. We used Jenks breaks (Jenks, 1977) to divide weather years and 
soil profiles into three groupings for each district, based on the mean 
yield level for each year and profile. Jenks breaks were calculated using 
the R package “BAMMtools”, using the function “getJenksBreaks()”. 
These groupings allow for a more intuitive grouping of weather and soil 
constraints. We used a second-degree ANOVA to include interaction 
effects. Each district has one η2

g value for each input, representing the 
percent of variance explained by that input. 

2.3.2. Total management effect 
We also calculated the total management effect (η2

g,TM), which 
represents the combined effect of management variables (cultivar, fer
tilizer, planting date) for the global tier. The total management effect is 
the sum of the effect sizes of the three management variables, including 
first and second-order contributions of management inputs. 

2.3.3. Fixed fertilizer cases 
For global effects, we also examined scenarios for fixed low, medium, 

and high fertilizer rates. As changing fertilizer rates is a more cost- 
intensive management strategy, this process allows us to examine the 
effect of lower cost management adaptations (cultivar choice and 
planting date) on yield variance. We use the same notation for global 
effects (η2

g ) in the fixed fertilizer cases, using context to specify the fer
tilizer level. We also calculated the total management effect for fixed 
fertilizer cases, which represents the combined effect of cultivar, 
planting date, and their interaction as compared to soil, weather, and 
other interaction effects. 

2.3.4. Yearly effect sizes 
We also calculated yearly effect sizes (η2

y), which fix a given 
weather-year in a district and calculate effect sizes for all simulations in 
a given growing season. Yearly effect sizes represent the proportion of 
yield variance explained by soil or management inputs when weather is 
held constant. We used the yearly effect sizes to answer two questions 
about yield variation: (i) how do the impacts of soil and management on 
yield vary between years? and (ii) which weather variables explain this 
variation? 

As each district has 37 distinct weather-years, each district has 37 η2
y 

for each input factor (e.g. soil and management). As in the global case, 
we use Jenks’ breaks to separate soil profiles into 3 distinct groups based 
on mean yield for each profile. As weather is fixed for each year, we do 
not use Jenks’ breaks for separating weather-years. 

To summarize the 37 η2
y values, we calculated the median (50th 

percentile) and standard deviation of the 37 η2
y for each input factor. A 

higher standard deviation of η2
y for an input implies that the importance 

of this input in explaining yield variance varied to a greater degree due 
to yearly weather changes. 

2.4. Weather correlation analysis 

In addition to assessing how the impacts of soil and management on 
yield varied by year, we also used the yearly effects to identify which 
weather variables are most associated with changes in these variables’ 
importance. Specifically, we computed the Pearson correlation (r), 

Table 2 
DSSAT cultivar coefficients for the three cultivars used in simulations.  

DSSAT Coefficients Cultivars 

ZMS606 PHB30G19 PHB30B50 

P1  159  209.9  155.1 
P2 1.85 0.441 1.763 
P5  810.2  815.9  800.4 
G1  945  840.8  795.6 
G2 8.559 8.84 15.34 
PHINT 59.7 56 59.73 

*P1: Degree days (base 8 ◦C) from emergence to end of juvenile phase; P2: 
Photoperiod sensitivity coefficient (0/1.0); P5: Degree days (base 8 ◦C) from 
silking to physiological maturity; G2: Potential kernel number; G5: Potential 
kernel growth rate mg/(kernel d); PHINT: Degree days required for a leaf tip to 
emerge (phyllochron interval) (◦C d) 
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between the soil and management yearly effect sizes (η2
y) and four 

meteorologically based variables: total growing season precipitation, 
rainy season onset, extreme heat degree days, and longest dry spell. 

These meteorological variables have each been shown to impact 
maize yield and farmer management decisions. Water is an important 
limiting factor for rainfed maize (Edreira et al., 2018) and total pre
cipitation has been shown to be more important than rainfall intensity or 
timing under climate change (Guan et al., 2015). The total growing 
season precipitation was summed from late October (DOY 298) to the 
end of March. We selected these dates based on the range of planting 
dates used (Nov 1. - Dec. 31) and the mean and median harvest dates 
(DOY 85 and 88, in late March). The start date considered is seven days 
before the first possible planting date (DOY 305), given the seven-day 
initialization period for each crop simulation prior to planting. 

The definition of rainy season onset is taken from (Tadross et al., 
2009) and was defined as the first day when at least 45 mm precipitation 
accumulated within four days. Similar to the total precipitation variable, 
we calculated the rainy season onset starting in late October (DOY 298). 
Among all district-years, there was no rainy season onset in 0.3 % of 
cases due to low and sporadic rainfall. In these cases, we assigned the 
rainy season onset as DOY 105 (March 16), which is the latest day of rain 
onset seen in any district. Smallholder farmer perception of changes in 
rainy season onset has been an important factor in farmers’ adjusting 
planting date and cultivar selection (Waldman et al., 2017) even though 
farmers’ perceptions of later rain onset is not seen in meteorological data 
(Waldman et al., 2019, 2017). 

Extreme heat degree days were calculated as the number of degree 
days exceeding 30℃, based on daily maximum temperature, for the 
months of January and February. Extreme heat has been shown to have 
a greater impact on soil water demand than reduced precipitation 
(Lobell et al., 2013), and we use this paper’s threshold for calculating 
extreme heat degree days (degree days exceeding 30℃). We use daily 

maximum temperature to calculate degree days exceeding the threshold 
(as opposed to Lobell’s paper which estimates hourly temperatures). 
These months represent the critical growth stage for maize, with the 
mean and median anthesis dates for all simulations occurring in early 
February (DOY 33 and 38). Maize crops are known to be especially 
vulnerable to drought stress near anthesis (Banziger et al., 2000). 

Dry-spells were calculated as consecutive days with 1 mm rain or 
less, also during January and February. We allowed for 1 mm of rain to 
account for averaging and interpolation in the gridded precipitation 
data. Dry-spells of 10 days or longer are common in Zambia (Chabala 
et al., 2013), which may limit crop yield or result in crop failure 
(Waldman et al., 2017). 

The correlations between yearly effect sizes and meteorological 
variables can be interpreted as showing whether an increase/decrease in 
the meteorological variables correlates with an increase or decrease in 
the percent of variance explained by an agricultural input. For example, 
if precipitation and planting date are inversely correlated, an increase in 
precipitation is associated with a decline in the importance of planting 
date, and vice versa. 

3. Results 

The district mean yields of DSSAT simulations ranged from 4901 to 
7910 kg/ha, with slightly higher yields in northern Zambia (Region III). 
The coefficient of variation (CV) of yield was on average higher in 
central and southern Zambia (Regions I & II), where there was a small 
percent of failed crops (Table 3). Simulated yields matched well with 
yields from the original crop experiments (6–9 tons per ha; Chisanga 
et al., 2019). These yields are higher than observed Zambian maize 
yields, which have averaged about 2600 kg/ha since 2010 (FAO, 2021). 
This difference between observed and potential yields is common in SSA 
(Blekking et al., 2021; Ittersum et al., 2016). Thus the effect sizes and 

Fig. 2. Schematic of ANOVA eta-squared statistic. The di
agram shows 9 individual observations (small dots) 
grouped by three soil types (colors). Eta-squared (η2) rep
resents the ratio of group sum of squares (represented by 
squared distance of thick arrows between group means and 
overall mean) to the total sum of squares (represented by 
squared distance of thin arrows between individual obser
vations and overall mean). In the group sum of squares 
calculation, the squared distance from the group mean to 
the overall mean is weighted by the size of the group (in 
this case, each group has 3 observations). In this example, 
the soil variable explains 81 % of the total yield variance.   
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variance decomposition should be interpreted in the context of potential 
(but achievable) grain yield under the specified management conditions 
and in the absence of weeds, pests and other biotic and abiotic limita
tions not simulated by DSSAT. Effect sizes are summarized at the 
agro-ecological region level, as smallholder agricultural recommenda
tions, including crop suitability, planting timing and cultivar choice, are 
commonly recommended at this scale in Zambia (e.g. publications by 
the World Bank (CIAT, 2017) and the United Nations Development 
Programme (UNDP, 2010)). 

3.1. Global effect sizes, all fertilizer levels 

Fertilizer dominated global effect sizes (η2
g ), explaining on average 

45 % of yield variance within a district, but the size of the effect was 
highly dependent on region and district. By comparison, cultivar, 
planting date, soil, and weather-year explained 4 %, 3 %, 7 %, and 16 % 
of yield variance respectively (Table 4). The η2

g values for fertilizer were 
highest in northern Zambia (Fig. 3b), with fertilizer explaining 72 % of 
yield variance on average in Region III. For comparison, fertilizer 
explained 17 % and 40 % of yield variance for the mean district in Re
gions I and II, respectively. 

By contrast, weather-year had the highest effect in the drier, hotter 
conditions of southern Zambia, explaining 30 % of yield-variance in 
Region I as compared to 16 % and 5 % in Regions II and III, respectively. 
Other notable findings include the greater importance of cultivar se
lection in Region III compared to Regions I and II, while planting date 
was 5–6 times more influential in Regions I and II than in Region III. At a 
district-level, fertilizer explained the highest percent of yield variance in 
54 of 72 districts, weather-year was most important in 17 districts (15 of 
which are in Region I), and soil in 1 district (also in Region I). The box 
and whisker plot (Fig. 3f) shows the range of η2

g for all districts. We also 
examined second-order interaction effects which are summarized in the 
supplementary material (see Table S1). These interaction effects were 
generally small in magnitude (≤ 1 % for all regions), with the exception 
of weather-year X planting-date interactions, which explained 3 % of 
yield variance in all districts, including 4 % in Region II, and 6 % in 
Region I. 

The global effect sizes (η2
g ) represent the percent of variance 

explained by an input in each district. However, districts may have 
different levels of yield variability in absolute terms. To examine abso
lute yield variability, we calculated the coefficient of variation (CV, a 
normalized measure of variance) of yield and the range of yields in 
response to each variable. Fig. 4 shows the coefficient of variation (cv) of 
yield in each district. Clearly yield has higher variability in southern 
districts, where weather has an increased effect size, although average 

yield is slightly lower in these districts. 
However, as this paper is concerned with understanding yield vari

ance at the district-level, we focus on ANOVA based effect sizes for the 
rest of this study. The ANOVA effect sizes can be readily compared and 
allow for calculation of interaction effects. However, understanding the 
absolute variance of yield magnitude may be helpful in comparing 
policy interventions across regions. 

To quantify the combined effect of all management practices, we 
calculated the total management effect sizes (η2

g,TM) for all simulations in 
each district. This effect size represents the sum of first-order effects for 
cultivar, planting date, and fertilizer, and the second-order effects 
involving any two of these factors. These effects can be contrasted with 
the effects of soil, weather, and other interaction effects. Fig. 5 shows the 
total management effects for all districts, with a clear trend of higher 
management effect in northern districts, largely due to fertilizer impact. 
Region III has a total management effect size of 0.82, meaning that 82 % 
of yield variance can be explained by management decisions only. By 
contrast Regions I and II have a mean η2

g,TM of 0.27 and 0.50 respectively 
(Table 4). 

3.2. Global effect sizes, fixed fertilizer levels 

We also calculated η2
g for fixed fertilizer levels (low, medium, and 

high). In these scenarios, no single input factor dominates the yield 
variance explanation, but clear spatial patterns exist (Fig. S2). In each of 
the fertilizer scenarios, the cultivar is more important in northern dis
tricts, and weather-year in southern districts. Soil has increased impor
tance in several isolated districts, some in Eastern Zambia. These 
patterns largely match those seen when combining all fertilizer levels. 
However, certain effect sizes change in magnitude as fertilizer rate is 
increased (Fig. 6), with weather becoming more important and soil less 
important across all regions. Cultivar selection decreases in importance 
in Regions I and II with increased fertilizer rates, while in Region III, 
cultivar explains the higher percent of yield variance in the medium 
fertilizer case. Planting date increases in importance in Regions I & II 
with increased fertilizer rates, while it decreases in importance in Re
gion III (exact effect sizes are displayed in Table S2). 

The total management effect (η2
g,TM) for the fixed fertilizer cases were 

calculated slightly differently than when all fertilizer levels are consid
ered (dashed line in Fig. 6). In the fixed fertilizer cases, fertilizer choice 
was excluded from the yield variance calculations. The total manage
ment effect thus represents the effects of cultivar, planting date, and 
their interaction, as compared to soil, weather, and other interaction 
effects (e.g. soil x management, weather x management, soil x weather). 
It is important to note that the total management effect sizes for fixed 
fertilizer rates should not be compared directly to the total management 
effect sizes for all fertilizer levels. 

3.3. Yearly effect sizes 

As in the case for global effect sizes, fertilizer dominated the spatial 
pattern of median values for yearly effect sizes (η2

y , Fig. 7, left), partic
ularly for northern districts. Notably, both fertilizer and planting date 
had high yearly standard deviations (Fig. 7, right) in central and 
southern districts, indicating that the importance of these factors varied 
greatly from year to year in these districts. 

Table 3 
Summary statistics for DSSAT crop simulations. Statistics were first calculated 
within each district, and then the statistics for districts in each agro-ecological 
region were averaged. Failed crop percent represents the percent of crop sim
ulations with zero yield.  

Agro-ecological Region 
(AER) 

Mean yield (kg/ 
ha) 

CV 
yield 

Failed crop 
percent 

Region I  6639  0.27  0.03 % 
Region II  6873  0.22  0.004 % 
Region III  7041  0.19 0 %  

Table 4 
Global effect sizes averaged across all districts and averaged within each agro-ecological region. (Standard deviation within each region shown in parentheses).  

Mean district η2
g across: Soil Weather- year Cultivar Fertilizer Planting Date Total Management Effect 

all districts  0.07 (0.07)  0.16 (0.13)  0.04 (0.03)  0.45 (0.27)  0.03 (0.03)  0.55 (0.27) 
Region I  0.09 (0.07)  0.30 (0.11)  0.02 (0.01)  0.17 (0.13)  0.06 (0.02)  0.27 (0.13) 
Region II  0.08 (0.08)  0.16 (0.06)  0.04 (0.03)  0.40 (0.14)  0.05 (0.04)  0.50 (0.13) 
Region III  0.04 (0.06)  0.05 (0.01)  0.07 (0.02)  0.72 (0.09)  0.01 (0.01)  0.82 (0.10)  
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As a case study, we examined the yearly variability for one district in 
each of Zambia’s agro-ecological regions: Choma in Region I (southern 
Zambia), Kapiri Mposhi in Region II (central Zambia) and Mpulungu in 
Region III (northern Zambia). These three districts are also outlined in 
Fig. 9 for context. 

Choma is known for having shorter growing seasons, with less 

reliable precipitation and higher maximum temperatures than districts 
further north. The yearly effect sizes for cultivar, fertilizer, planting 
date, and soil for Choma are shown in Fig. 8 (bottom), arranged by year. 
Fertilizer and planting date clearly had the dominant effect size in most 
years, with some degree of trade-off in the importance of these two 
variables. Cultivar was also important in a few isolated years, while soil 

Fig. 3. (a-e) Global effect size (η2
g ) for all DSSAT crop simulations by district. Only districts with significant effect sizes (p < 0.01) are shown. (f) Box and whisker plot 

showing district median, interquartile range, and outliers for each global effect size. 

Fig. 4. Coefficient of variation (cv) for yield (kg/ha) among all simulations in each district. Southern districts have increased yield variability compared to 
northern districts. 
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Fig. 5. Total management effect size for all simulations. This effect size represents the combined effect of cultivar, planting date, and fertilizer, and second-order 
interactions of these inputs. 

Fig. 6. Effect size change for low, medium, and high fertilizer rates. The four plots show results for all districts (top-left) and for Regions I, II, III (top-right, bottom- 
left, bottom-right). 
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had consistently low importance. By contrast, in Kapiri Mposhi (Fig. 8, 
middle), there was also a degree of trade-off in fertilizer and planting 
date effect sizes, although there were fewer years where planting date 
had a larger effect, compared to Choma district. There were also not any 
years where cultivar had a large (> 0.20) effect. In Mpulungu district 
(Fig. 8, top), the effect sizes were almost perfectly consistent, with a 
large effect size for fertilizer in all years, and very small amounts of 
variation in effect size for all inputs. 

3.4. Weather-management correlation analysis 

For each district, we determined the strength of the association be
tween the four meteorological variables (total growing season precipi
tation, rainy season onset, extreme heat days, and longest dry spell) and 
yearly effect sizes. Fig. 9 shows the district-level correlations between 
meteorological variables and effects sizes for soil and management. For 
example, the third row and second column of Fig. 9 show the correlation 
between total precipitation and planting date effect size, with positive 
correlations in gold and negative correlations in blue. For much of Re
gions I and II, an increase in total precipitation is negatively correlated 
with planting date effect size, thus planting date is more important when 

conditions are drier. There are a handful of districts in northeastern 
Zambia with a countervailing effect, where increased precipitation 
correlated with an increase in planting date importance. 

To illustrate these correlations for a single district, Fig. S3 shows the 
scatterplots comparing yearly effect sizes with the meteorological vari
ables for Choma district. Two such correlations were significant 
(p < 0.05). There was one outlier with a high cultivar effect size, which 
occurred in a year with low total precipitation and a high number of heat 
stress days (although correlations between cultivar η2

y and these mete
orological variables were not significant). 

4. Discussion 

Our analysis is the first national-scale assessment of factors that drive 
maize yield variance under typical smallholder management conditions 
in Zambia, a regionally significant agricultural producer that is a bell
wether for agricultural development and a potential breadbasket for 
Africa (Ittersum et al., 2013). 

In particular, this study builds on previous work investigating the 
factors influencing smallholder yield variance in three notable ways. 
First, we examined five variables, including three distinct management 

Fig. 7. Median (left) and standard deviation (right) of yearly effect sizes (η2
y).  
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inputs. Prior studies quantifying yield variance often look at a single 
factor (often climate, e.g. Lobell and Field, 2007; Iizumi and Ram
ankutty, 2016), while those that considered management may not 
evaluate specific inputs (e.g. (Lobell and Asner, 2003; Ben-Ari and 
Makowski, 2014)), or instead assumed that variance unexplained by soil 
and/or weather was attributable to management (Lobell et al., 2002). 

Second, this study quantifies soil-weather-management interaction 
effects, including correlations between agriculturally targeted meteo
rological variables and yearly effect sizes. Other studies that considered 
interaction effects focused on a specific type of interaction, such as soil 
fertility and fertilizer (Burke et al., 2017), or cultivar and fertilizer 
(Sileshi et al., 2010), and did not quantify the effects of multiple 
interactions. 

Third, this study quantifies yield variance at a national level, using 
the district as the unit of analysis. This scale allows for regional trends to 
be readily apparent. Notably, other studies that evaluated complex soil- 
weather-management (and socio-economic) interactions are often based 
on comprehensive analysis of a small number of study sites (Chisanga 
et al., 2019; Dutta et al., 2020) and may be challenging to scale 

nationally. 
The combination of these three factors allows this study to uniquely 

provide insights on how smallholder management decisions impact 
yield variance regionally, and where specific management decisions 
have a greater impact. 

4.1. Spatial gradients of management effects 

The relative importance of management variables varied substan
tially across Zambia, due to the different weather and soils used in each 
district. Fertilizer’s global effect size was largest in northern districts ( η2

g 

= 0.72 in Region III) but decreased in other regions (η2
g = 0.17, 0.40 in 

Regions I, II). The variable productivity of fertilizer in Zambia has been 
studied previously in Zambia (Burke et al., 2019, 2017), but those 
studies focused more on the specific relations between soil properties (e. 
g. ph, organic carbon) and fertilizer responsiveness, rather than 
analyzing spatial variation of fertilizer responsiveness. In particular, 
Burke found that maize yield had higher fertilizer response in less acidic 

Fig. 8. Yearly effect sizes in Mpulungu (Region III, northern Zambia), Kapiri Mposhi (Region II, central Zambia), and Choma (Region I, southern Zambia) districts, 
listed by year. 
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soils (higher ph), and in soils with higher organic matter, although the 
organic matter impact was larger in magnitude (Burke et al., 2019, 
2017). Sandy soils, more common in southern regions, also showed a 
lower responsiveness to fertilizer than acrisols with higher clay content 
(Burke et al., 2019, 2017). Among the soil properties used in simula
tions, we see that soils in Region III are both more acidic and have a 
higher organic carbon percent (Fig. S4). The higher precipitation in 
Region III also may lead to increased leaching of nutrients, resulting in 
higher importance for increased fertilizer quantities to replenish soils of 
nutrients (Burke et al., 2017). The increased effect size of fertilizer in 
further north may thus be due to a combination of factors including: (i) 
higher fertilizer responsiveness due to organic carbon % (mitigating 
effect of higher ph soils), (ii) higher fertilizer responsiveness due to 
increased precipitation and availability of soil water, (iii) more consis
tent soil/weather constraints leading to lower yield variability due to 
soil and weather, (iv) leaching of nutrients increasing fertilizer impor
tance and (v) more favorable soil/weather constraints leading to higher 
yields and allowing fertilizer to bring yields closer to their potential. 

The other two management inputs, cultivar and planting date, had 
far smaller effect sizes, representing 3–4 % of yield variance among all 
districts (Table 4). The decreased importance of planting date in 

northern districts (η2
g = 0.01 in Region III as opposed to 0.06, 0.06 in 

Regions I, II) is likely due to the more consistent rains in Region III. The 
importance of planting date in Region I matches previous studies on 
Choma district, where optimal planting dates based on rainy season 
onset vary from late November to early January (Chabala et al., 2013) 
and farmers planting across a broader range of dates (Waldman et al., 
2017). 

Cultivar selection also explained a higher percent of yield variance in 
Region III. We selected three medium-maturing cultivars due to their 
previous calibration for DSSAT and the common use of medium- 
maturing cultivars throughout Zambia (Blekking et al., 2021). Howev
er, as Blekking notes, and as evidenced in other studies (Waldman et al., 
2017), early-maturing cultivars are increasingly supplanting 
medium-maturing cultivars even when a region has sufficient climate 
conditions to support higher-yielding, later maturing cultivars. This shift 
could be due to economic necessities of farmers to plant and harvest 
early to provide food during the lean season (Thierfelder et al., 2016). 
Most of Zambia has adequate rainfall to support growing 
medium-maturity cultivars (Blekking et al., 2021), and these cultivars 
are expected to produce higher yields than earlier-maturing cultivars. 

Fig. 9. Maps showing Pearson’s correlation coefficients between yearly effect sizes (rows: soil, cultivar, planting date, fertilizer) and meteorological variables 
(columns: max dry spell length, total precipitation, extreme heat degree days, rainy season onset). Gold colors represent positive correlations and blue colors 
represent negative correlations. Highlighted districts are Choma (orange), Kapiri Mposhi (pink) and Mpulungu (purple). Only statistically significant (p < 0.05) 
correlations are shown. 
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We thus attribute the increased importance of cultivar in more northern 
districts to the favorable conditions in Region III allowing 
better-performing cultivars to achieve higher yields, creating increased 
differentiation among cultivar performance. The importance of cultivar 
selection (and data selection generally) is discussed in Section 4.3. This 
section includes results from an alternative variance decomposition 
using a different set of cultivars. 

Overall, management explained a far higher percent of yield vari
ance in Region III (82 %), compared to regions I and II (27 % and 50 %), 
largely due to fertilizer application. These results match the common 
narrative of soil and weather constraints in Zambia, that districts in 
Region III have better conditions for longer maturing cultivars with 
higher yield potential. Soil and weather explain a lesser percentage of 
yield variance, although their effect sizes both increase further south, 
with weather explaining 30 % of yield variance in Region I. This larger 
effect size for weather in Region I is likely due to the lower and less 
reliable precipitation during the growing season. Soil’s effect size is 
relatively low in most districts, representing less than 10 % of yield 
variance explained in 52 of 72 districts (72 %). Districts with higher soil 
effect size (above 10 %) are not geographically clustered, including 
districts in far western, southern, and eastern Zambia. The greater effect 
size for soil in these districts is likely due to higher within-district 
variability of soil properties, increasing yield variance due to soil type. 
_Importantly, the soil and weather data sets are by necessity derived 
from gridded data products, and thus may not reflect the local (sub- 
pixel) variability in soil fertility and weather that can influence yield. 

4.2. Soil-weather-management interactions 

4.2.1. Impact of different fertilizer rates 
We also examined how effect sizes varied when fertilizer rates were 

fixed. As an increase in fertilizer rate should generally increase yields, 
farmers can be expected to increase fertilizer application when possible. 
However, farmers may not receive timely deliveries of fertilizer through 
the FISP subsidy program (Mubanga and Ferguson, 2017), or may have 
other constraints that limit the amount of fertilizer they apply. It is thus 
reasonable to consider the causes of yield variance when the fertilizer 
level is fixed at different levels (low, medium, and high levels). 

As fertilizer rate increased, the relative effect sizes of other inputs 
varied (Fig. 6). The importance of weather consistently increased in all 
three regions, while soil’s effect consistently decreased. The decrease in 
soil importance at high fertilizer levels has been seen previously in a 
crop model-based study (Folberth et al., 2016). These trends can be 
explained as increased fertilizer rates allowed yields to overcome soil 
constraints, while optimal weather allowed fertilizer to achieve higher 
yields. 

Increasing fertilizer rate had a varied impact on other management 
effects, depending on region. Planting date’s effect generally increased 
with higher fertilizer in Regions I and II while it decreased in Region III. 
This increased importance of planting date in Region III for low fertilizer 
may be due to the importance of timing planting correctly, in order to 
allow small quantities of fertilizer to have a positive effect on grain yield 
under good soil/weather conditions. 

Cultivar’s effect size decreased with higher fertilizer rate in Regions I 
and II but was largest at medium fertilizer levels in Region III. The peak 
in cultivar effect at medium levels of fertilizer may indicate that, at high 
levels of fertilizer, weather’s impact simply dominates yield variance. 

4.2.2. Weather-management correlations 
The weather correlation analysis showed several clear patterns in 

terms of how meteorological variables correlated with yearly effect 
sizes. First, correlations with total precipitation were the most wide
spread for all input effect sizes. These results match a previous study on 
sorghum yield in West Africa, which found that total precipitation 
impacted yields to a greater degree than the timing of rain onset or the 
intensity of rains (Guan et al., 2015). 

The associated decline in planting date importance and increase in 
fertilizer importance with increased total precipitation in much of cen
tral and southern Zambia (Regions I and II) showed how improved 
weather conditions (higher rainfall) alter the relative importance of 
these two key management variables. This pattern is visible more 
generally, as planting date and fertilizer had opposite sign correlations 
with meteorological variables (rows 3 and 4 in Fig. 9). Generally, an 
increase in planting date’s importance was correlated with more adverse 
weather conditions (lower total precipitation, longer maximum dry 
spell, more heat stress days, later onset of rains), while an increase in 
fertilizer’s importance correlated with more favorable conditions. 

Other variables (cultivar, soil) had more localized correlations with 
meteorological variables. Cultivar showed a decrease in importance 
when the maximum dry spell length was longer for some districts in 
central Zambia. Previous studies have highlighted the importance of 
maize cultivars resistant to heat stress in Africa (Lobell et al., 2011), 
however there are no widespread correlations (positive or negative) 
between the number of heat stress days and cultivar’s effect size. A few 
districts in central Zambia have a significant negative correlation be
tween cultivar effect and heat stress days, indicating that increased heat 
stress correlates with decreased yield variance due to cultivar. The 
absence of correlations for cultivar may in part be due to the relatively 
similar potential yield for the three cultivars, and the similar perfor
mance of these cultivars under different meteorological conditions. As 
discussed in the next section, cultivar’s importance can increase when 
cultivars have a larger difference in potential yield. 

Understanding soil’s impact on yield variance was more challenging 
due to both soil’s lower overall effect on yield, and the differing number 
of soil profiles used in each district (between 4 and 30 for each district). 
Soil only had noticeable correlations with total precipitation. Some 
districts in western Zambia had positive correlations between total 
precipitation and soil’s effect, indicating that in rainier years, soil was 
likely to have a larger impact in yield. Some of these districts had low 
clay content (Fig. S4, bottom), so the increased soil importance may 
represent variability in soil texture in these districts, with sandy soils less 
able to retain water in higher precipitation seasons. One such district in 
western Zambia, Kaoma, had the lowest water retention capacity 
compared to districts in central Zambia (Cornelissen et al., 2013). Some 
northeastern districts had negative correlations, indicating that 
increased total precipitation correlated with an increased importance of 
soil while some western districts had positive correlations, indicating 
the opposite effect. One possible explanation is that when total precip
itation is higher, all soils in these districts retain sufficient water for 
crops, decreasing the difference in productivity among soil profiles. 

4.3. Limitations 

Our study had several limitations due to the limitations of crop 
modeling and selecting representative data sets for management, soil, 
and weather. First, our analysis did not consider economic costs, such as 
agricultural inputs (cost of fertilizer, seed, labor, etc.). Each manage
ment option in the experiment design is treated as equally likely, 
although in reality farmer decision-making is complex, and farmers may 
make decisions not designed for yield-optimization. Research in Zambia 
has found links between higher socioeconomic well-being and hybrid 
seed use (Smale and Mason, 2014), and that fertilizer subsidies for the 
FISP subsidy program may more often be allocated to farmers with 
larger holdings (Mason and Jayne, 2013). The analysis also did not 
consider farmer motivation to plant and harvest early, which may be 
necessary to provide food during the lean season (Thierfelder et al., 
2016). Rather, the analysis is based upon final yield at maturity. Effect 
sizes are also based on potential yield using the prescribed management 
and may not be identical with those seen for observed yields, where a 
wide variety of factors may affect productivity (e.g. pests, disease, early 
harvest). Further, we also did not consider irrigation, an important 
constraint to agricultural intensification (Jayne et al., 2014) in Africa. 

M. Cecil et al.                                                                                                                                                                                                                                    



Field Crops Research 301 (2023) 109014

14

Irrigation will also be increasingly important for sub-Saharan Africa to 
become food self-sufficient (Ittersum et al., 2016), although as of 2017, 
only a small percent (~1 %) of Zambia smallholder farmers used irri
gation on field crops (Ngoma et al., 2019), and thus focusing on rainfed 
agriculture is not a major limitation of this study. 

Data selection has important ramifications for crop model-based 
studies. This study used management inputs representative of small
holder farmers, corroborated by local expert knowledge. The crop model 
simulations are sensitive to selection of inputs, and results for the vari
ance decomposition would change if a different set of inputs for fertil
izer, cultivar, or other factors were used. To examine the sensitivity of 
the variance decomposition to input choices, we used a separate set of 
trial data from field sites in three districts (Choma, Kafue, Kabwe) to 
calibrate early, medium, and late-maturing (EML) cultivars. We chose 
not to use these three cultivars in the main results as the data collected 
were not sufficiently detailed (e.g. only limited soil properties measured 
at a single depth). However, the effect sizes for these cultivars illustrate 
the importance of considering management inputs when interpreting 
effect sizes, and that using cultivars with a large difference in potential 
yields will increase the effect size for cultivar. 

The variance decomposition for the EML cultivars showed a much 
larger cultivar effect size (mean cultivar η2

g = 0.31 with the EML culti
vars, as compared to 0.04 for the main set of cultivars). Other spatial 
patterns resembled those in this study (e.g. weather more important in 
southern districts, fertilizer in northern districts, see Fig. S5). The 
increased effect size for cultivar is likely due to a wider range in cultivar 
parameters (akin to those in Table 2) and the higher yield potential for 
medium and late maturing cultivars in the EML set. We considered using 
three cultivars with large differences in yield potential an unrealistic 
choice for smallholder farmers. However, choosing among three culti
vars with similar (but not identical) maturity and yield potential rep
resents a realistic selection dilemma for smallholders in a market 
saturated with different cultivars (Waldman et al., 2017, 2019; Blekking 
et al., 2021). 

Negative effects of excessive soil water on crop yield are also 
important to consider. Even in areas with low or moderate annual pre
cipitation (< 1000 mm / year) (e.g. cowpea crops in Sudan savanna 
(Iseki et al., 2021), negative effects of excessive water can still occur 
which are not always captured by crop models (Li et al., 2019). We 
performed a correlation analysis comparing mean yearly growing season 
precipitation for each district with mean yearly crop yields (averaged 
across soil and management permutations). The results (Fig. S6) show a 
clear south-north gradient, with significant positive correlations in drier 
conditions of southern Zambia (Region I), and significant negative cor
relations in wetter conditions of northern Zambia. It should be noted 
that DSSAT did capture some negative impacts of excessive precipitation 
in Li’s study (based in the United States), although not to the full extent 
seen in observed data (Li et al., 2019). Further field trials would be 
needed to determine if DSSAT fully captures these negative effects to the 
extent seen in Zambia. 

Given the lack of weather stations and extensive soil sampling in SSA 
(Dobardzic et al., 2019), it was not possible to use ground or station 
measured soil and weather data. We thus used gridded soil and weather 
data with relatively fine spatial resolutions (~10 km) that were used in 
prior crop modeling studies. The soil database (Han et al., 2019) is a 
state-of-the-art gridded data set based on the SoilGrids 1 km data set 
(Hengl et al., 2014), which integrates an extensive soil sample databases 
with satellite-based covariates, and is designed for use in the DSSAT crop 
model. However, it does not include estimates of phosphorus or potas
sium, and generally may not capture the fine-scale gradients in fertility 
between different farmer fields (Tittonell et al., 2008). The soil effects 
thus should be interpreted as interpreting how soil fertility changes 
within a district, and not how historical management may have 
improved or degraded soils locally. 

Similarly, the gridded weather data sets were selected due to their 

relatively fine spatial resolution and their accuracy. MSWEP precipita
tion data performed best in terms of correlation with gauge precipitation 
measurements (Beck et al., 2017b). Like soil data, however, the weather 
data do not fully capture sub-grid variability in weather conditions, 
which can be substantial in agricultural systems with high weather 
variability (Baron et al., 2005). This study does use soil and weather 
grids with approximately a 10 km grid cell, a substantial improvement 
on previous products (e.g. General Circulation Models with 200 km 
resolution). As mentioned above, improved soil measurements and 
weather station observations can be used as inputs provided these data 
are available. Continued improvements in local data collection are 
crucial for accurately modeling soil and weather constraints in small
holder agriculture. 

5. Conclusions 

A few general conclusions emerge from our study. In total, man
agement explained 53 % of yield variance, although this percentage 
increased greatly in northern districts with higher precipitation and 
more favorable growing conditions, in large part due to the effect of 
fertilizer. Management choices explained 27 %, 50 %, and 82 % of yield 
variance in different agro-ecological regions Soil and weather con
straints also affected which management interventions were more 
important. Generally, fertilizer’s effect was largest in more favorable 
growing conditions, explaining 45 % of the yield variability on average, 
while planting date’s effect was larger in less favorable conditions 
(lower precipitation, higher heat stress), explaining 5–6 % of yield 
variance in southern and central agro-ecological regions. The effect of 
cultivar selection was more muted on average (4 %) due to the relatively 
similar potential yields of the three cultivars selected. The soil effect was 
largest in southern and central agro-ecological regions, where soil 
explained 8–9 % of district-scale yield variance. 

Effective policy interventions require an understanding of yield 
variance at a variety of spatial scales, from field and farm to district and 
region. Zambia has a substantial farm subsidy program providing fer
tilizer and hybrid seed to smallholder farmers, often with recommen
dations for management at the agro-ecological region level. The 
approach and results of this study can inform where particular man
agement interventions have a greater impact, both at the regional and 
district level and provide policymakers with actionable insights on yield 
variance that can be complemented with studies at a local scale. 
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