Droughts

SMAP-HydroBlocks, a 30-m satellite-based soil moisture dataset for the conterminous US

We introduce SMAP-HydroBlocks (SMAP-HB), a high-resolution satellite-based surface soil moisture dataset at an unprecedented 30-m resolution (2015–2019) across the conterminous United States. SMAP-HB was produced by using a scalable cluster-based merging scheme that combines high-resolution land surface modeling, radiative transfer modeling, machine learning, SMAP satellite microwave data, and in-situ observations. We evaluated the resulting dataset over 1,192 observational sites. Its largest benefit of SMAP-HB is the high spatial detail and improved representation of the soil moisture spatial variability and spatial accuracy with respect to SMAP products.

Field-scale soil moisture bridges the spatial-scale gap between drought monitoring and agricultural yields

Drought monitoring and yield prediction often rely on coarse-scale hydroclimate data or (infrequent) vegetation indexes that do not always indicate the conditions farmers face in the field. Consequently, decision-making based on these indices can often be disconnected from the farmer reality. Our study focuses on smallholder farming systems in data-sparse developing countries, and it shows how field-scale soil moisture can leverage and improve crop yield prediction and drought impact assessment.

Field-scale Crop Yield Prediction

Field-scale satellite observations, physical models, and machine learning combined can enable crop yield prediction at high spatial resolution at data-scarse regions. Learn more about it [here](research/crop_yields_zambia).