SMAP-HydroBlocks

High-Resolution Soil Moisture Data Reveal Complex Multi-Scale Spatial Variability Across the United States

Soil moisture (SM) space and time variability critically influences freshwater resources, agriculture, ecosystem dynamics, climate and land-atmosphere interactions, and it can also trigger hazards such as droughts, floods, landslides, and aggravate wildfires. Here, we present the first continental assessment of how SM varies at the local scales using [SMAP-HydroBlocks](https://waterai.earth/publication/2021_vergopolan_smaphydroblocks). This study maps the SM spatial variability, characterizes the landscape drivers, and quantifies how this variability persists across larger spatial scales. Results revealed striking SM spatial variability across the United States. However, this SM variability does not persist at coarser spatial scales resulting in extensive information loss. This information loss implicates inaccuracies when predicting non-linear SM-dependent hydrological, ecological, and biogeochemical processes using coarse-scale models and satellite estimates.

SMAP-HydroBlocks, a 30-m satellite-based soil moisture dataset for the conterminous US

We introduce SMAP-HydroBlocks (SMAP-HB), a high-resolution satellite-based surface soil moisture dataset at an unprecedented 30-m resolution (2015–2019) across the conterminous United States. SMAP-HB was produced by using a scalable cluster-based merging scheme that combines high-resolution land surface modeling, radiative transfer modeling, machine learning, SMAP satellite microwave data, and in-situ observations. We evaluated the resulting dataset over 1,192 observational sites. Its largest benefit of SMAP-HB is the high spatial detail and improved representation of the soil moisture spatial variability and spatial accuracy with respect to SMAP products.